Ход поршня диаметр поршня: Что дает соотношение хода поршня к диаметру цилиндра

Содержание

Что дает соотношение хода поршня к диаметру цилиндра

Что касается двух и четырехтактных двигателей, выбор соотношения между ходом поршня и диаметром цилиндра действительно очень важен для определения характеристик отбора мощности. Если ход поршня меньше диаметра цилиндра, соотношение меньше 1, получаем двигатель с коротким ходом (тип «super-square»). Если ход поршня и диаметра цилиндра равны, соотношение равно 1 (тип «square»). Если ход поршня больше диаметра цилиндра, соотношение больше 1, получаем двигатель с длинным ходом (тип «under-square»). При одинаковом объеме двигателя и аналогичных значениях важных параметров наблюдается следующая тенденция: как правило, двигатели с длинным ходом поршня, по сравнению с двигателями с коротким ходом, имеют больший крутящий момент и лучшую тягу, но меньшие обороты и максимальную мощность. Кроме того, благодаря меньшей камере, они, похоже, имеют улучшенное сгорание и меньшее выделение не сгоревших газов. И все же сегодня среди двухтактных двигателей с наилучшими эксплуатационными характеристиками, и не только гоночных, все чаще встречаются те, у которых диаметр цилиндра и ход поршня равны.
Рассмотрим причины, обусловившие этот выбор

В двухтактном двигателе с отличными эксплуатационными характеристиками соотношение между ходом поршня и диаметром цилиндра очень важно для получения рациональной и эффективной с точки зрения гидроаэромеханики компоновки детали типа «link stud» {связывающая стойка).

Преимущества длинного и короткого хода поршня.

В мире специальных мощных гоночных двухтактных двигателей уже вряд ли есть место длинному ходу поршня. В картинге появление на треке двигателя Rotax, 100 смЗ, тип «square», определенно привело к закату эры славных двигателей с длинным ходом поршня (имевших, как правило, типовые размеры 48 мм х55мм), доминировавших до 1988 г.
Вообще говоря, двигатель с длинным ходом поршня способен развивать более высокий момент вращения на меньших оборотах. У него тяжелее шатун, даже если поршень, по теории, может быть легче. При длинном ходе поршня, по сравнению с коротким ходом поршня, ведущий вал всегда имеет больше пространства между пальцем шатуна и шатунной шейкой, поэтому он не столь жесткий, и имеет маховик большего диаметра.
Двигатели с соотношением ход поршня /диаметр цилиндра меньше или равным 1 имеют следующие особенности: наличие клапана на выхлопе, новейшей коробки скоростей с цифровым зажиганием, водяного охлаждения (позволяющих вам работать с большими коэффициентами сжатия, а также с опережением зажигания и бедной карбюрацией) и точной гидроаэромеханики в части перепускных окон. Эти факторы позволили им достичь хороших результатов на малых и средних оборотах, вращаясь с частотой, немыслимой для двигателей сдпинным ходом, развивать очень высокую мощность.
Также двигатели с соотношением ход поршня /диаметр цилиндра меньше или равным 1, по сравнению с двигателями с длинным ходом, имеют следующее преимущество: они могут рассчитывать на меньшую среднюю скорость поршня при той же частоте вращения. Это означает меньшее температурное и механическое напряжение, не говоря об очевидных преимуществах при наполнении насоса с отводом. Что касается продувки, двигатель с коротким ходом поршня имеет преимущество, поскольку короче путь, который свежие газы должны совершать для полной замены выхлопных, а площадь контакта между границами свежих и выхлопных газов меньше. Однако у двигателя с коротким ходом больше проблем с охлаждением, и, как следствие, более высокая чувствительность, исходя из вариации соединения цилиндр/поршень.

Одним из двигателей объемом 100 смЗ, на котором чаще других в истории картинга выигрывали гонки, несомненно, является DAP T75. Он несколько раз побеждал в 80-х годах; его характеристическое соотношение 48 мм х 55 мм, это двигатель с длинным ходом поршня, и отличным крутящим моментом на малых оборотах. Макс, частота вращения — 175000 об/мин.

Двигатель с соотношением ход поршня/диаметр цилиндра, равным 1: идеальное решение…

Соотношение ход поршня /диаметр цилиндра, равное 1, идеальное решение для изготовления специального высокомощного гоночного двигателя (а также для использования на дорогах). Кроме того, сочетание преимуществ, свойственных двигателям с длинным и коротким ходом, позволяет рассчитывать на лучшее соответствие между перепускными и выхлопными окнами. Вообще говоря, это решение позволяет окнам с идеальным соотношением высота/ширина обеспечивать лучшее «дыхание» двигателя при любых оборотах.
Например, рассмотрим обычный двигатель 125 смЗ, с диаметром цилиндра 56 мм и ходом поршня 50,6 мм (типично для двигателей Yamaha). Оказывается, обычное выпускное окно (со штифтом и бустером) и единственное находящееся напротив него окно иногда связаны не 4 боковыми перепускными окнами (что свойственно двигателям типа «square»), a 6. Это решение часто использовалось в двигателях с коротким ходом, поскольку у двигателя с объемом 125 смЗ и соотношением 56 мм х 50,6 мм часто оказывалось, что боковые поперечные окна излишне расширялись: они требовали существенного внутреннего давления и скорости расхода для обеспечения хорошей продувки, хорошего повторного заполнения, а такие значения давлений можно было получить только на высоких оборотах. Эту проблему в некоторых моделях двигателей можно решить разделением первичного (а иногда и вторичного) перепускного окна на два, уменьшая секцию расхода и получая более чистую подачу на средних оборотах.

Rotax стал первым производителем, вернувшимся к выпуску двигателей типа «square» (ход поршня равен диаметру цилиндра) с объемом 100 смЗ для картинга. Омологация прошла в 1988 г. Превосходство этого двигателя на быстрых треках ознаменовало историческую перемену: на некоторых треках самые последние двигатели типа «square» с объемом 100 смЗ превышают показатель 21000 об/чин.Более глубокие исследования в области гидроаэромеханики сделали возможным применение решения с 5 перепускными окнами и на двигателях с коротким ходом. Причина, по которой решили не отказываться от использования двигателей этого типа в гонках, в том, что двигатели типа «square» имеют лучше мощность на малых и высоких оборотах. В то же время, двигатель с соотношением 56 х 50. 6 мм сохранял такое преимущество, как близкая к максимальной мощность на средних оборотах (в аналогичных двигателях это, понятно, является базовой концепцией!). Последним из производителей мотоциклетных двигателей, перешедшим от двигателя с соотношением 56×50.6 мм на чемпионате мира с объемом 125 смЗ, стала Yamaha, представители которой — инженер Бартол и гонщик — на личном опыте смогли почувствовать разницу между двумя решениями. Сразу после перехода с 56×50.6 мм на 54×54 мм показатели фирмы выросли, и вскоре она стала непримиримым соперником таких компаний, как Aprilia и Honda.

Конфигурация link stud с 4 противолежащими боковыми перепускными окнами и корректирующим перепускным окном всегда гарантирует наилучшие результаты продувки и эффективности наполнения.

Некоторые преимущества в гидроаэромеханике, которые можно получить за счет увеличения диаметра цилиндра в четырехтактных двигателях

Не считая самого очевидного преимущества, получаемого при увеличении диаметра, т.е., гарантированного большего прироста объема, чем при увеличении хода поршня, такой подход дает ощутимые преимущества, касающиеся гидроаэромеханики четырехтактных двигателей. Увеличивая зону камеры сгорания, вы, фактически, получаете большее пространство вокруг седел клапанов, и очевидные преимущества, касающиеся заполнения цилиндра и снижения вредных воздействий на зоны между корпусом цилиндра и тарельчатым клапаном, что может иметь существенное значение при высоких оборотах. Затем, в некоторых случаях, вы можете перейти к установке больших клапанов, и это может стать неизбежным в точке, в которой цилиндр потребует более широких каналов для лучшего заполнения на повышенных оборотах.
В отличие от двухтактного, четырехтактный двигатель много выигрывает от снижения хода поршня из-за моментов, не только жестко связанных с диаметром клапана, но и связанных со средней скоростью перемещения поршня, которая, при превышении порога в 25 м/с, начинает вызывать первые проблемы в части надежности.
Четырехтактный двигатель имеет одну фазу (цикл выхлопа), когда поршень поднимается к головке без замедления (при открывании выпускного клапана поршень поднимается, не испытывая влияния противодействующей силы). Этого не происходит в двухтактных двигателях (компрессия начинается, фактически, сразу после выхлопа, и с нею приходит замедление).

Двигатели классов KZ и KF: одной и той же дорогой.  На всех двигателях объемом 125 смЗ классов KZ и KF ход поршня равен диаметру цилиндра: на всех — 54 х 54 мм.

Средняя скорость поршня

Под средней скоростью поршня мы понимаем среднюю скорость, достигаемую поршнем при определенных оборотах. Средняя — ибо поршень за один оборот коленвала виртуально останавливается дважды, в ВМТ и НМТ, для смены направления движения снизу вверх и наоборот. Основная часть напряжения на поршень приходится на его штифт: разрыв поршня при чрезмерных оборотах происходит в этой критической точке, именно этим объясняется ее укрепление.
Линейная скорость поршня представлена формулой:
V = (C x g):30
где V- средняя скорость поршня, м/с,
С — ход поршня, м (ход в 40 мм равен 0,04 м)
g — скорость вращения (обороты), при которой необходимо определить среднюю скорость поршня
30 -фиксированное число
Изучая некоторые двигатели, в том числе, гоночные, мы обнаружили интересные вещи.
Двигатель 50 смЗ для скутера при 8000 об/мин имеет среднюю скорость поршня 10,6 м/с
Двигатель 100 смЗ для карта ICA при 21000 об/мин имеет среднюю скорость поршня 35 м/с!

Сравнение основных конструктивных особенностей.

Сравниваем два двигателя объемом 125 смЗ, имеющие различные конструктивнее особенности. В первом ход поршня и диаметра цилиндра равны между собой, 54 х 54 мм, имеется разделенный выпуск с деталью типа «link stud» (связывающая стойка) (Honda), а во втором — короткий ход, 56 х 50,6 мм (Cagiva). Видно, что конструкции их перепускных окон отличаются.

MBA VR1

Чтобы использовать преимущества и двигателей с коротким ходом, и двигателей типа «square», MBA разработала одноцилиндровый двигатель 125 смЗ с диаметром цилиндра 55 мм и ходом поршня 52 мм Количество боковых перепускных окон — 6, из них основное разделено, для обеспечения достаточного давления в тракте и лучшей продувки также и при средней скорости; пятое перепускное окно также разделено.

Двигатель с коротким ходом oт CRS

В последней омологации от CRS был последний двигатель 125 смЗ KZ, использующий короткий ход с соотношением 56 мм х 50,6 мм; на мировых чемпионатах школа Yamaha постоянно выступала с такого рода двигателями, пока не был выпущен двигатель Харальса Бартола 125 см3 54 мм х 54 мм, а впоследствии — и reed derbi 125 см3, и tkm.

Rotax

Двигатель, который вошел в историю современных двухтактных двигателей: rotax 125 смЗ устанавливается на картах Aprilia, а теперь и на rotax max, с соотношением диаметра цилиндра и хода поршня 54 х 54 мм. Используется компоновка с 4 противоположно расположенными и одним корректирующим перепускными окнами.

Линейная скорость поршня — очень важный параметр в жизни двигателя. Не случайно на двигателе 100 смЗ после расхода 20 литров на средне скоростной кольцевой гоночной трассе, и даже после каждого нагрева на скоростном треке, необходимо устанавливать новый поршень. Не сделав этого, вы рискуете угробить свой двигатель!

По этой формуле вы можете вычислить среднюю скорость поршня любого двигателя. Только вдумайтесь, для двухтактного двигателя еще в середине 80-х порог в 30 м/с казался непреодолимым; затем, с внедрением новейших материалов, достигли 35 м/с, даже на двигателях, способных выдержать только один нагрев в картинге.
В четырехтактных двигателях, где проблема серьезнее, идет расширение в цикле выхлопа (поршень не замедляется при подъеме к ВМТ), предел не должен превышать 25 м/с, хотя во время гонки, и на особенно быстрых двигателях, это предельное значение часто превышалось…

Статья взята с vsescooter.ru

Длинноходные и короткоходные моторы – в чем разница, и какие лучше?

Средняя скорость, и какой она бывает

Для понимания вопроса придется вспомнить немного о конструкции ДВС и принципах его работы. Вы наверняка знаете, что в основе любой конструкции двигателя внутреннего сгорания лежит воздействие расширяющихся газов на поршень. Поршни могут быть любой формы и размеров, но у любого поршня есть такой параметр, как средняя скорость, и от нее зависит очень и очень многое.

Средняя скорость поршня – это величина, которую можно определить по формуле Vp = Sn/30, где S – ход поршня, м; n – частота вращения, мин-1. И именно она определяет степень возможного форсирования двигателя по оборотам, ускорения элементов шатунно-поршневой группы во время работы, а также его механический КПД.

От средней скорости поршня зависят нагрузки на стенку поршня, на поршневой палец, шатун и коленвал. Причем зависимость эта квадратичная: с увеличением скорости (Vp) в два раза нагрузки увеличиваются в четыре раза, а если в три – то в девять раз.

Эксперименты инженеров-мотористов уже очень давно доказали, что классическая конструкция шатунно-поршневой группы выдерживает максимальную скорость порядка 17-23 м/с. И чем выше эта величина, тем скорее изнашивается мотор. Увеличить скорость поршня практически невозможно – самые облегченные гоночные двигатели Формулы-1 имели скорость порядка 23-25 м/с, и это безумно много. Этого удалось достичь только потому, что «формульные» моторы рассчитаны на очень короткую эксплуатацию – от них не требуется «ходить» по 100 000 км.

От теории – к практике. Как известно, мощность мотора – это производная от крутящего момента, помноженного на обороты (об этом я писал большую статью с таблицами и графиками). То есть, если мы хотим получить больше мощности, то надо увеличивать обороты. А так как скорость поршня ограничена, то у нас не остается другого выбора, кроме как уменьшить его ход. Чем меньше расстояние нужно пройти поршню за один оборот, тем меньше может быть его скорость.

Короткоходные, длинноходные и «квадратные» моторы

Казалось бы, выше мы только что озвучили два прекрасных аргумента для максимального уменьшения хода поршня. К тому же, чем меньше ход поршня, тем больше диаметр цилиндра при том же объеме, и тем более крупные клапаны можно поставить. Улучшается газообмен, а значит, и работа мотора в целом… Но, как оказалось, безмерно уменьшать ход тоже нельзя.

Чем меньше ход, тем больше должен быть диаметр цилиндра, если мы хотим сохранить объем. А вот форма камеры сгорания с ростом диаметра цилиндра ухудшается, соотношение объема камеры и площади неизбежно растет, увеличивается коэффициент остаточных газов, возрастают тепловые потери, ухудшается сгорание топлива… КПД падает, склонность к детонации повышается, ухудшаются экономичность и экологичность.

При уменьшении хода поршня снижается, к тому же, и диаметр кривошипа коленчатого вала, а значит, уменьшается крутящий момент мотора. Ухудшаются и массогабаритные параметры двигателей – они становятся куда крупнее в горизонтальном сечении. К тому же для сохранения рабочего объема приходится увеличивать число цилиндров, а это уже ведет к резкому повышению сложности конструкции. В общем, нужен был компромисс.

Основные задачи проектирования моторов решили к 60-м годам прошлого века, тогда же нащупали пределы прочности конструкции по средней скорости поршня. Стало ясно, что оптимальные параметры мощности, общего КПД и габаритов у атмосферного мотора получаются в том случае, если диаметр цилиндра равен ходу поршня или чуть меньше.

На фото: двигатель Nissan Qashqai

Если они совпадают, то такие моторы еще называют «квадратными». Моторы, у которых диаметр цилиндра все-таки больше хода поршня, называют короткоходными, а те, у которых он меньше, – длинноходными.

Внимательный читатель скажет: стоп, а откуда вообще взялись короткоходные моторы, если эксперименты доказали, что эффективнее всего «квадратные» или чуть-чуть длинноходные?! Все просто: короткоходники получили распространение в автоспорте. Там расход топлива и приемистость на низких оборотах не сильно «делали погоду», и можно было пожертвовать КПД ради достижения большей мощности на высоких оборотах при сохранении малого рабочего объема.

Для получения лучшей топливной экономичности, тяги и чистоты выхлопа, наоборот, ход поршня увеличивали, жертвуя оборотами и максимальной мощностью. Длинноходные моторы применяли там, где были нужны тяга и экономичность.

Тем временем, к 80-м годам среднюю скорость поршня в серийных моторах довели до предела в 18 м/с, дальше ее увеличивать не получалось. Такая ситуация сохранилась до 90-х, когда требования к массогабаритным и экономическим характеристикам моторов резко возросли.

Длинноходный прогресс

90-е годы – это в первую очередь массовое внедрение новых экологических норм, резкое повышение массы кузова автомобилей из-за новых требований по пассивной безопасности, а заодно и возросшие требования к габаритам и экономичности силовых агрегатов. Машины становились просторнее изнутри и безопаснее во всех смыслах.

А двигателям приходилось поспевать за прогрессом. Массовый переход на многоклапанные головки блоков цилиндров повысил мощность и сделал моторы чище. Средний рабочий объем мотора постарались уменьшить и тем самым выиграть в расходе топлива и габаритах. Прогресс в области конструирования поршневой группы позволил уменьшить высоту поршня и увеличить длину шатуна, сделав больше механический КПД мотора.

Следовательно, стало возможно перейти к более длинноходным конструкциям, которые при том же рабочем объеме были компактнее, имели больший крутящий момент и к тому же стали экономичнее. Облегчение поршневой группы позволило снизить нагрузки на нее при высоких оборотах, а массовое внедрение турбонаддува и регулируемого впуска – еще и выиграть в максимальной мощности и тяге. Умеренно длинноходные моторы от этого только выиграли.

В 2000-е в стане двигателей объемом от 2 литров наметился перелом в переходе от «квадратов» к длинноходным конструкциям. И вот вам несколько примеров. При рабочем объеме 2 литра моторы VW серии ЕА888 (стоят на множестве моделей концерна от Skoda Octavia до Audi A5) имеют ход поршня 92,8 мм при диаметре цилиндра 82,5, а 2-литровые моторы Renault серии F4R (более всего известный по Duster) – 93 мм и 82,7 соответственно. Моторы Toyota объемом 1,8 л серии 1ZZ (Corolla, Avensis и др. ) – еще более длинноходные, их размерность 91,5х79.

На фото: двигатель Volkswagen Golf GTI

Рабочие обороты таких двигателей заметно уменьшились, особенно у турбонаддувных, снизились и обороты максимальной мощности. А значит и снижение механического КПД уже не столь важно, зато преимущества налицо. По габаритам моторы лишь немного больше «классических» 1,6 из недавнего прошлого, а по тяге и расходу топлива намного превосходят однообъемных предшественников.

В современных моторах пытаются сочетать высокую эффективность работы длинноходных моторов и повышенный механический КПД короткоходных. Так, в ультрасовременном (но тем не менее уже снимаемом с производства) моторе BMW серии N20В20 (стоят на 1-й, 3-й, 5-й сериях, X1 и X3) применяется несимметричная поршневая группа, в которой ось коленчатого вала и ось поршневых пальцев смещены относительно оси цилиндров. Тут используются регулируемый маслонасос, плазменное напыление цилиндров, бездроссельный впуск и прочие технические «фокусы» для снижения механических потерь и сопротивления впуска. Размерность этого длинноходного мотора 90,1х84, и никто не скажет, что у него плохие характеристики хоть в чем-то, кроме надежности.

Дизели

Дизельные моторы, которые в силу особенностей рабочего цикла обычно являются длинноходными и низкооборотными, выиграли вдвойне. Внедрение турбонаддува резко подняло крутящий момент и позволило снизить степень сжатия, а прогресс топливной аппаратуры и поршневой группы – еще и увеличить рабочие обороты.

На фото: двигатель Volkswagen Golf TDI

В итоге дизели превзошли по литровой мощности атмосферные бензиновые моторы, а по крутящему моменту – бензиновые моторы с наддувом. Так, двигатели серии N57 (3-я, 5-я, 7-я серии, X3, X5 и др.) от BMW при диаметре цилиндра 84 мм и ходе поршня 90 мм имеют рабочий объем 2,993 литра, мощность до 381 л. с. и 740 Нм крутящего момента. Средняя скорость поршня при этом – 13,2 метра в секунду.

Оборотная сторона

Конечно же, беспроигрышных лотерей не бывает, и чудесной высокой отдачи добились ценой надежности – тут нет никакого секрета. Старый принцип актуален и поныне: у «сильно длинноходных» моторов высокая средняя скорость поршня увеличивает нагрузку на стенки цилиндра.

Конечно же, материалы становятся лучше, но при сравнении двигателей одной серии с разными параметрами хода поршня и диаметра цилиндра заметно, что длинноходные модели более склонны к износу поршневых колец и задирам цилиндров. И ресурс поршневой у них оказывается существенно ниже, чем у более «квадратных» собратьев.

А вот при сравнении разных моторов все далеко не так однозначно. На моторах с алюминиевым блоком и алюсиловым покрытием стараются снизить нагрузку на стенку цилиндра в том числе и снижением хода поршня, но, как правило, все равно ресурс получается меньше, чем у моторов с чугунными гильзами или блоком.

Мотор Renault-Nissan серии M4R (Qashqai, Fluence и др.), который пришел на смену уже упомянутому чугунному F4R, имеет ход поршня 90,1 мм при диаметре цилиндра 84 – он все еще длинноходный, но ход поршня значительно сократился. Габариты при этом не увеличиваются за счет более тонкостенной конструкции блока цилиндров.

На фото: двигатель Renault Latitude

Современные двигатели не нуждаются в высоких оборотах для достижения высокой мощности, а экономичность и экологичность становятся все важнее. Пусть даже в реальной эксплуатации заявленные характеристики и не подтверждаются… К тому же, можно путем усложнения конструкции обойти множество ограничений, которые десятки лет заставляли делать выбор между мощностью и экономичностью моторов.

Короткоходные «крутильные» моторы просто вымирают, им нет места в новом мире. Даже в Формуле-1 отказались от экстремальных конструкций с рабочими оборотами за 19 тысяч и соотношением диаметра цилиндра и хода поршня больше 2,4 к 1. Конечно, для фанатов и гоночных серий выпуск подобной техники сохранится, но в практическом плане смысла в ней уже нет. Победа длинноходных конструкций, за редким исключением, фактически состоялась.

Одним из немногих «оплотов короткоходности» до недавнего времени оставались атмосферные V6 и V8 от Mercedes-Benz. Так, моторы серии М272 (E-Klasse W211, M-Class W164 и др.) – откровенно короткоходные во всех вариантах исполнения. Например, у 3-литровой версии соотношение хода к диаметру будет 82,1 к 88. Как и их предки в лице М104, так и их наследники вплоть до М276, они были олицетворением успешных короткоходных моторов. Компания не стремилась к излишней компактности моторов, места было достаточно, а момента у двигателей объемом 3-3,5 литра и так хватало с запасом. Городить длинноходную конструкцию не было смысла.

Но новое поколение двигателей AMG серий М133/М176 с наддувом стали длинноходными – 83х92 мм, как и перспективная рядная шестерка 3,0 с наддувом серии М256 – 83х92,4 мм.

На фото: двигатель Mercedes-AMG CLA 45 4MATIC

Из «могикан» остаются разве что моторы GM, их блок V8 6,2 Vortec/L86/LT1 все еще не стремится к компактности, имея размерность 103,25х92 мм, и даже компрессорная версия LT4 сохраняет ту же размерность блока. Но это, скорее всего, тоже ненадолго.

Конец спорам

Даунсайз, наддув, непосредственный впрыск, гладкая моментная характеристика, высокий крутящий момент, регулируемый ГРМ и продвинутые трансмиссии сотворили маленькое чудо. Споры «длинноходный или короткоходный» уже более не актуальны.

Моторы вдруг прибавили в литровой мощности до границ, ранее считавшихся возможными только для специально подготовленных гоночных моторов. Увидев цифры в 120-150 л. с. с литра объема, мы уже не удивляемся, и даже 200 л. с. на литр кажутся вполне реальными, а «смешной» паспортный расход топлива для мощной и тяжелой машины кажется вполне реальным. Дизельные двигатели из «гадких утят» превратились в прекрасных лебедей с литровой мощностью даже большей, чем у бензиновых двигателей.

Во многом все это, плюс уменьшение габаритов и веса моторов, стало возможным благодаря длинноходной конструкции. Окончательно оформившийся тренд вряд ли переломится, особенно с учетом прогнозируемого вытеснения ДВС электромоторами и разнообразными «удлинителями дистанции».

Техноблогер показал, как ход поршня и его диаметр влияют на мощность и обороты двигателя

Чем короче ход поршня двигателя, тем больше оборотов, а значит, выше его мощность

Известно, что современные двигатели болидов «Формулы-1» способны выдавать порядка 15 000 об/мин, показатели, недоступные для автомобилей общего пользования. Это возможно благодаря тому, что конструктивно силовые агрегаты болидов имеют очень короткий ход поршней и более широкий цилиндр (соответственно, увеличенный диаметр поршня). Шатуны поршней в таком случае при работе испытывают огромные нагрузки, но это всего лишь плата за дополнительную мощность.

 

Джейсон Фенске, хорошо знакомый нам автомобильный гуру с канала Engineering Explained, в опубликованном на YouTube ролике как всегда доходчиво, убедительно и доказательно объясняет, почему и как именно изменение в двигателе может развить бόльшую мощность, даже если его общий объем остается прежним.

Известно, что максимальная мощность двигателя зависит от того, сколько оборотов в минуту он может производить. Чем больше число оборотов, тем мощнее двигатель. Формула, по которой высчитывается мощность в лошадинных силах — крутящий момент умноженный на число оборотов двигателя (об/мин * Нм)

 

Так что вполне логично, что самые мощные двигатели также имеют самые высокие обороты. Соответственно, поршень с коротким циклом может покрыть большее расстояние за то же время по сравнению с двигателем, у которого длиннее ход и меньше диаметр цилиндра. Это обеспечивает лучшую «оборотистость» силовой установки. Аналогично больший диаметр цилиндра означает большие клапаны, а это значит, что двигатель может прогонять через себя больше воздуха в каждом цикле, позволяя смеси лучше сгорать. Таким образом, чем больше воздуха, тем больше энергии.

 

Смотрите также

Этот же принцип работает в обратную сторону. Допустим, ваша цель — эффективность, а не мощность. Таким образом, следует ориентироваться на двигатель с меньшими в диаметре цилиндрами и большим ходом. Почему? Потому что чем больше площадь поверхности цилиндра во время сгорания, тем меньше энергии теряется на нагрев, что приводит к более эффективному циклу.

Больше подробностей и полезностей — на предлагаемом видео

Укороченный ход и удлиненный ход поршня

Двигатель, у которого ход поршня меньше внутреннего диаметра цилиндра, называется двигателем с укороченным ходом.

Двигатель, у которого, наоборот, ход поршня превышает внутренний диаметр цилиндра, называется двигателем с удлиненным ходом.

Если внутренний диаметр цилиндра равен ходу поршня, такой двигатель называется двигателем с уравновешенным ходом.

Рабочие характеристики двигателя зависят от многих факторов, в том числе от соотношения между диаметром цилиндра и ходом поршня. Но существует определенная взаимосвязь между конструктивными и рабочими параметрами, характерная для всех двигателей.

Двигатель с укороченным ходом (ход поршня меньше внутреннего диаметра цилиндра)

  • Как правило, быстро набирает обороты, достигает более высокой скорости вращения (измеряемой количеством оборотов в минуту — rpm).
  • На высоких оборотах отличается высокой приемистостью.
  • На низких оборотах характерно снижение крутящего момента (мощности).
  • Часто для использования преимущества высоких скоростных характеристик двигатель комплектуется коробкой передач,у которой последняя передача имеет более низкое передаточное число (т.е. более высокий номер).

Двигатель с удлиненным ходом (ход поршня превышает внутренний диаметр цилиндра)

  • Как правило, низкоприемистый (медленно набирает обороты) из-за удлиненного хода поршня.
  • На низких оборотах обеспечивает высокий крутящий момент.
  • По существу, является низкооборотным двигателем.
  • Вследствие более низкой скорости работы обладает, как правило, высокой экономичностью и обычно комплектуется коробкой передач, у которой последняя передача имеет более высокое передаточное число.

Двигатель с уравновешенным ходом (внутренний диаметр цилиндра равен ходу поршня)

  • Обеспечивает оптимальный баланс между крутящим моментом на низких оборотах и мощностью на высоких оборотах.
  • Обеспечивает высокий крутящий момент на низких оборотах и высокую мощность на высоких оборотах.
  • Способен работать на пониженной передаче, обеспечивающей экономию топлива, и при этом сохраняет высокую приемистость в городском цикле.

Двигатели внутреннего сгорания (ДВС)

В соответствии с правилами и спортивным кодексом для моделей используются двигатели внутреннего сгорания с рабочим объемом от 1,0 до 25,0 кубических сантиметров. Двигатели внутреннего сгорания по принципу работы подразделяются на два типа: четырехтактные и двухтактные. По способу воспламенения горючей смеси модельные двигатели подразделяются на калильные и компрессионные. В четырехтактном двигателе рабочий процесс в цилиндре совершается за четыре хода поршня и соответствует двум оборотам коленчатого вала. У двухтактных двигателей рабочий процесс совершается за два хода поршня — такта, что соответствует одному обороту коленчатого вала. Основным двигателем, применяемым в авиамодельном спорте, является двухтактный двигатель. Рабочий процесс двухтактного двигателя протекает следующим образом. При движении поршня вверх к верхней мёртвой точке (ВМТ) в кривошипной камере создается давление, благодаря которому рабочая смесь засасывается карбюратором в полость картера. При движении поршня вниз к нижней мёртвой точке (НМТ) смесь в картере сначала сжимается, а затем поступает по перепускным каналам в цилиндр. При следующем ходе поршня вверх, который происходит под действием сил инерции вращающихся масс, рабочая смесь в цилиндре сжимается, одновременно происходит всасывание в кривошипную камеру из картера новой порции рабочей смеси. При движении поршня вверх в положении, близком к (ВМТ), от сжатия рабочая смесь нагревается и воспламеняется от калильной свечи. Образовавшиеся при сгорании газы начинают давить на поршень. При движении последнего открывается выхлопное окно, и газы устремляются наружу. Перемещаясь далее вниз, поршень открывает впускное окно, и в результате разности давления в кривошипной камере и цилиндре горючая смесь поступает в цилиндр, происходит перепуск и продувка, затем сжатие, и цикл повторяется.

Схемы работы двух и четырёхтактного
двигателей внутреннего сгорания.

Большое влияние на мощность двигателя, число его оборотов, экономичность
и пусковые качества оказывает газораспределение: начало и конец процесса
всасывания, перепуска и выхлопа.
Всасыванием называется процесс заполнения  картера рабочей смесью (воздуха и
топлива). Протекает этот процесс так: поршень при своем движении вверх
создает разрежение в кривошипной камере. Через трубку,  называемую
всасывающим патрубком, воздух устремляется в кривошипную камеру.
Патрубок, по которому воздух из атмосферы поступает в кривошипную
камеру, имеет переменное сечение, вследствие чего скорость, а
следовательно, и давление по оси потока переменны. В самом малом сечении
патрубка, где максимальная скорость потока и минимальное статическое
давление, устанавливается жиклер. Под действием разности давления в
жиклере и патрубке топливо вытекает во всасывающий патрубок. Протекающий
воздух захватывает частицы топлива, распыляет их и уносит в полость
кривошипной камеры. Величина отверстия жик­лера, пропускающего горючее,
регулируется иглой. А впуск рабочей смеси в картер осуществляется
поршнем, валом  или золотником.

Перепуском называется процесс перемещения горючей смеси из
кривошипной камеры в цилиндр. Про­дувкой называется процесс заполнения
цилиндра свежей порцией горючей
смеси и вытеснения сгоревших газов

к выхлопному окну.

Выхлопом называется процесс выхода газов из цилиндра.

Фазами газораспределения называют углы поворота коленчатого вала, со­ответствующие процессам:
всасывания, продувки и выхлопа. Фазы газораспределения обычно изображают
в виде круговой диаграммы. Круговая диаграмма дает представление
скольким градусам угла поворота вала двигателя соответствуют процессы
газораспределения. 

Основными
геометрическими характеристиками двигателя являются рабочий объем
V, диаметр цилиндра
D, ход поршня Н, их отношение и степень сжатия Е.
В двухтактном двигателе рабочий объем используется не полностью и
поэтому вводят понятие эффективного рабочего объёма и эффективного
рабочего хода. Эффективным рабочим объемом называется объём цилиндра от верхней кромки выхлопного окна до
нижней. А соответствующий эффективному рабочему объёму рабочий ход
называется эффективным рабочим ходом. При одном и том же рабочем объеме можно варьировать
диаметром цилиндра и ходом поршня в зависимости от того, какую внешнюю
характеристику двигателя хотим получить. Скоростные авиамодельные двигатели обычно делают с
коротким ходом поршня. Объясняется это тем, что скоростной двигатель для
получения максимальной мощности и высокого к.п.д. винта эксплуатируется
на высоких оборотах. Поэтому применение короткохода дает возможность
снизить среднюю скорость поршня и следовательно, снизить потери мощности
на трение в рабочей паре двигателя. Кроме того, уменьшается износ.
Трение и износ уменьшаются еще и потому,  что с изменением рабочего хода,
уменьшается боковая составляющая силы давления сгоревших газов,
прижимающая поршень к цилиндру. Но увлекаться уменьшени­ем хода поршня
нельзя, так как возрастают нагрузки на шатун и шейку коленчатого вала.
Фактором, ограничи­вающим уменьшение хода поршня, является крутящий у
момент двигателя, который в рабочем  диапазоне оборотов должен быть
равен потребному крутящему моменту вин­та, имеющего наибольший к.п.д. 

Необходимо четко представлять себе, что рабочим объёмом цилиндра называется объем,
заключенный между верхней (ВМТ) и нижней (НМТ) мертвыми точками поршня в цилиндре. Когда поршень
находится в верхней мертвой точке, весь объём, находящийся над поршнем, называется объемом камеры сгорания. Суммарный объем, получаемый
при сложении объема камеры сгорания с рабочим объемом, называется
полным объемом цилиндра. Рабочий объем можно определить по геометрической формуле объема цилиндра, а вот
объем камеры сгорания — только
замером.

Справочная и техническая информация о деталях двигателей

Характеристики автомобильных двигателей.

Двигатели внутреннего сгорания (ДВС) — это наиболее распространенный источник энергии для транспортных средств.

Этот двигатель вырабатывает мощность за счет преобразования химической энергии топлива в теплоту, которая затем преобразуется в механическую работу.
Преобразование химической энергии в теплоту осуществляется при сгорании топлива, а последующий переход теплоты в механическую работу осуществляется за счет внутренней энергии рабочего тела, которое, расширяясь, выполняет работу. В качестве рабочих тел в ДВС используются газы, давление которых возрастает за счет сжатия. Если процесс сгорание топлива происходит внутри цилиндра двигателя, этот процесс называется внутренним сгоранием. Если процесс сгорания происходит вне цилиндра, то он называется внешним сгоранием. По количеству тактов различают двигатели с двухтактным и четырехтактным рабочим циклом. Двухтактный двигатель это двигатель, в котором присутствуют два рабочих такта: сжатие и расширение. В двухтактном двигателе весь рабочий цикл полностью происходит в течение одного оборота коленчатого вала. Газообмен происходит в конце такта расширения и в начале такта сжатия. Продолжительность впуска и выпуска определяется самим поршнем, когда он при перемещении вверх после НМТ последовательно перекрывает продувочные и выпускные окна. К недостаткам двухтактного двигателя относится повышенный расход топлива и высокий уровень выбросов, плохая работа на холостом ходу и повышенные тепловые нагрузки.

 Четырехтактный двигатель это двигатель с четырьмя рабочими циклами:



ВПУСКСЖАТИЕРАБОЧИЙ ХОДВЫПУСК
  • Впуск — впуск воздуха или топливной смеси. В процессе первого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ) и через впускной клапан в цилиндр засасывается свежая топливно-воздушная смесь.
  • Сжатие — сжатие поршнем рабочей смеси в камере сгорания. Поршень идёт из НМТ в ВМТ, сжимая полученную рабочую смесь.
  • Рабочий ход (сгорание и расширение) – движение поршня при сгорании рабочей смеси; смесь поджигается искрой от свечи зажигания или давлением (дизель). Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень.
  • Выпуск — очищение камеры сгорания от отработавших газов. При достижении поршнем ВМТ выпускной клапан закрывается, и цикл начинается сначала.

Преимуществом четырехтактного двигателя является высокий коэффициент наполнения во всем диапазоне частот вращения коленчатого вала, низкая чувствительность к падению давления в выпускной системе, возможность управления кривой наполнения путем подбора фаз газораспределения и конструкцией впускной системы. Почти все автомобильные двигатели это четырехтактные поршневые двигатели внутреннего сгорания. Они обладают множеством характеристик – такие как крутящий момент, мощность, степень сжатия, расход топлива, выброс вредных веществ и т. д., которые во многом зависят от их конструктивных особенностей.

Кратко мы разберем основные характеристики и отличия поршневых автомобильных двигателей внутреннего сгорания:

  • Тип (код) двигателя.

Каждый производитель автомобилей присваивает своим силовым агрегатам буквенно-цифровые коды, позволяющие подобрать запасные части в зависимости от комплектации конкретной модели автомобиля. Тип двигателя наносится методом выдавливания на отфрезерованный, технологический отлив блока цилиндров или выдавливается на специальной табличке, которая прикрепляется к блоку цилиндров. Как правило, там же содержится информация и о номере двигателя. Некоторые производители наносят эти данные на головку блока цилиндров (например, AUDI двигатель AAN). В подавляющем большинстве случаев можно прочесть нанесенные данные о типе двигателя, без подъемных механизмов или снятия агрегата с автомобиля.


Пример расположения площадки с выбитым типом двигателя Mitsubishi 4G64 Пример расположения таблички
с типом двигателя MAN D 0226 MKF
  • Диаметр цилиндра ( D )

Диаметр цилиндра — это размер отверстия в блоке цилиндров (гильзе цилиндра), в котором поступательно двигается поршень. Это конструктивный параметр блока цилиндров влияющий на рабочий объем двигателя. Помимо этого от диаметра цилиндра зависит общая габаритная ширина и длинна двигателя. Размер указывается, как правило, в миллиметрах или дюймах с точностью до сотых долей. Данные размере номинального диаметра цилиндра указываются при комнатной температуре ( 20 градусов Цельсия). Измерения производятся нутромером или аналогичным по точности инструментом.

  • Ход поршня ( S )

Ход поршня — это расстояние между положением любой точки поршня в верхней мертвой точке (В.М.Т.) и положение поршня в нижней мертвой точке (Н.М.Т). Это конструктивный параметр коленчатого вала, влияющий на рабочий объем двигателя. Размер указывается, как правило, в миллиметрах или дюймах с точностью до сотых долей. Измерения производятся штангель-циркулем или аналогичным по точности инструментом. Как правило, измерения производятся непосредственно на коленчатом валу. От размера, хода поршня зависит габаритная высота двигателя .

  • Количество цилиндров двигателя ( z )

Количество цилиндров является важнейшей конструктивной характеристикой двигателя. В зависимости от количества цилиндров рассчитывается и проектируется и система охлаждения двигателя. Количество цилиндров самым прямым образом влияет на общие габаритные размеры и вес автомобиля. Например: c увеличением количества цилиндров при одном и том же литраже двигателя размеры его цилиндров уменьшаются. Это уменьшение вследствие увеличения отношения внутренней поверхности цилиндра к его объему сопровождается усилением охлаждения двигателя. Уменьшение диаметра цилиндра позволяет создавать камеру сгорания улучшенной формы и вместе с обстоятельством усиления охлаждения позволяет производителем создавать более экономичные двигатели. Но есть и обратная сторона, увеличение количества цилиндров ведет к общему удорожанию силового агрегата. В современном автомобильном моторостроении получили распространение 2-х, 3-х , 4-х , 5-и , 6-и , 8-и , 10-и , 12-и , 16 –и цилиндровые двигатели.

  • Объем двигателя ( V )

Как правило, в справочниках и каталогах указывается рабочий объем двигателя. 

Рабочий объем двигателя ( VH(литраж двигателя) складывается из рабочих объемов всех цилиндров. То есть, это произведение рабочего объема одного цилиндра Vp на количество цилиндров Z. 

Рабочий объем цилиндра ( Vp ) — это пространство, которое освобождает поршень при перемещении из верхней мертвой точки (ВМТ) к нижней мертвой точки (НМТ).

Полный объем цилиндра ( Vo ) — это сумма рабочего объема одного цилиндра Vp и объема одной камеры сгорания в головке блока Vk.

Объем камеры сгорания ( Vk ) — объем полости цилиндра и камеры сгорания в головке блока цилиндров над поршнем, находящимся в верхней мертвой точке (ВМТ) — т.е. в крайнем положении и в наибольшем удалении от коленчатого вала. Параметр, прямо влияющий на степень сжатия двигателя. В гаражных условиях измерение камеры сгорания производится с помощью измерения объема жидкости заполняющего камеру.

  • Количество клапанов на один цилиндр

В современном автомобилестроении все чаще и чаще применяются двигатели с мульти клапанным газораспределительным механизмом. Увеличение количества клапанов является важнейшим параметром позволяющим получать большую мощность при одном и том же объеме двигателя, за счет увеличения объема смеси или воздуха попадающего в цилиндры на такте впуска. Увеличение количества клапанов позволяет получать, лучшее наполнение цилиндров свежей рабочей смесью и быстрее освобождать камеру сгорания от отработанных газов.

По типу топлива двигатели разделяются на следующие группы:

Бензиновые двигатели (Petrol) — имеют принудительное зажигание топливовоздушной смеси искровыми свечами. Принципиально различаются по типу системы питания:
В карбюраторных системах питания смешение бензина с воздухом начинается в карбюраторе и продолжается во впускном трубопроводе. В настоящее время выпуск таких двигателей практически прекращено из-за высокого расхода топлива и несоответствия предъявляемым современным экологическим требованиям.
Во впрысковых ( инжекторных ) двигателях топливо может распылятся одним инжектором (форсункой) в общий впускной трубопровод (центральный, моновпрыск) или несколькими инжекторами перед впускными клапанами каждого цилиндра двигателя (распределенный впрыск). В этих двигателях, возможно, небольшое увеличение максимальной мощности и снижение расхода топлива и уменьшение токсичности отработавших газов за счет рассчитанной дозировки топлива блоком электронного управления двигателем;
Двигатели с непосредственным впрыскиванием бензина в камеру сгорания , который подается в цилиндр несколькими порциями, что оптимизирует процесс сгорания, позволяет двигателю работать на обедненных смесях, соответственно максимально уменьшается расход бензина и выброс вредных веществ в атмосферу.

Дизельные двигатели (Diesel) — поршневые двигатели внутреннего сгорания с внутренним смесеобразованием, в которых воспламенение смеси дизельного топлива с воздухом происходит от возрастания ее температуры при сжатии. По сравнению с бензиновыми, дизельные двигатели обладают лучшей экономичностью (примерно на 15-20%) благодаря более чем в два раза большей степени сжатия, значительно улучшающей процессы горения топливо — воздушной смеси. Неоспоримым достоинством дизелей является конструктивное отсутствие дроссельной заслонки, которая создает сопротивление движению воздуха на впуске и в связи с этим увеличивает расход топлива. Максимальный крутящий момент дизели развивают на меньшей частоте вращения коленчатого вала.

Гибридные двигатели — двигатели совмещающие характеристики дизеля и двигателя с искровым зажиганием.

  • Компоновка поршневых двигателей (тип расположения)

Значительное разнообразие компоновок поршневых двигателей связано с их размещением в автомобиле и необходимостью уместить определенное количество цилиндров в ограниченном объеме моторного отсека.

    • Рядный двигатель (R) — компоновка, при которой все цилиндры находятся в одной плоскости. Применяется для небольшого количества цилиндров (R2, R3, R4, R5 и R6). Рядный шестицилиндровый двигатель легче всего поддается уравновешиванию (снижению вибраций), но обладает значительной длиной (рис. 1).
    • V-образный двигатель(V) — цилиндры у него расположены в двух плоскостях, как бы образуя латинскую букву V. Угол между этими плоскостями называют углом развала двигателя. V-образные двигатели выпускаются, по понятным причинам, только с четным количеством цилиндров. Такая компоновка позволяет значительно уменьшить длину двигателя, но увеличивает его ширину. Наиболее распространенными являются двигатели с компоновкой V6 и V8, реже встречаются V4, V10, V12, V16. (рис. 2)
    • Оппозитный двигатель имеет угол развала 180°, благодаря этому у него высота агрегата наименьшая среди всех компоновок. Противолежащие друг другу цилиндры располагаются горизонтально. Как правило, выпускаются 4-х и 6-и цилиндровые варианты оппозитных двигателей. (рис. 3)
    • VR-образный двигатель — обладает небольшим углом развала (порядка 15°), что позволяет уменьшить как продольный, так и поперечный размеры агрегата. Получили распространение компоновки VR5 и VR6. (рис. 4)
    • W-образный двигатель имеет два варианта компоновки — три ряда цилиндров с большим углом развала (рис. 5) или как бы две VR-компоновки (рис. 6). Обеспечивает хорошую компактность даже при большом количестве цилиндров. В настоящее время серийно выпускают W8 и W12.

    В современной мировой практике для уточнения типа клапанного механизма применяются следующие сокращения:

      • OHV     обозначает верхнее расположение клапанов в двигателе. 
      • OHC     обозначает верхнее расположение распредвала.
      • SOHC    обозначает один распределительный вал верхнего расположения.
      • DOHC    обозначает конструкцию газораспределительного механизма с двумя распределительными валами расположенными сверху.
      • Степень сжатия двигателя, компрессия

      Понятие степени сжатия не следует путать с понятием «компрессия», которое указывает максимальное давление создаваемое поршнем в цилиндре при данной степени сжатия (например: степень сжатия для двигателя 10:1, значение «компрессии» при этом соответствует значению в 14 атмосфер).

        • Степень сжатия ( ε ) — отношение полного объема цилиндра двигателя к объему камеры сгорания. Этот параметр показывает, во сколько раз уменьшается полный объем цилиндра при перемещении поршня из нижней мертвой точки в верхнюю мертвую точку. Для бензиновых двигателей степень сжатия определяет октановое число применяемого топлива. Для бензиновых двигателей значение степени сжатия определяется в пределах от 8:1 до 12:1, а для дизельных двигателей в пределах от 16:1 до 23:1. Общая мировая тенденция в двигателестроении это увеличение степени сжатия как у бензиновых так и у дизельных двигателей, вызванное ужесточением экологических норм.

          • Компрессия (давление в цилиндре в конце такта сжатия) ( p c ) является одним из показателей технического состояния (изношенности) цилиндропоршневой группы и клапанов. У двигателей с серьезным пробегом, как правило, уже имеется неравномерный износ гильзы цилиндра и поршневых колец, в связи, с чем поршневое кольцо не плотно прилегает к поверхности цилиндра. Также изнашивается клапанный механизм, а точнее стержень клапана и направляющая втулка клапана. Вследствие перечисленных причин возникают потери герметичности камеры сгорания.

          Где:
          p0 — это начальное давление в цилиндре в начале такта сжатия.
          ε— степень сжатия двигателя.

          • Мощность двигателя ( P )
          • Мощность — это физическая величина, равная отношению произведенной работы или произошедшего изменения энергии к промежутку времени, в течение которого была произведена работа или происходило изменение энергии. Обычно мощность измеряется в Лошадиных силах (Horse Power – англ). Значение 1 л.с. (HP) = 0,735 кВт) или в Киловаттах (1 кВ) = 1,36 л.с. (HP). Максимальное значение мощности и максимальный крутящий момент достигаются при различных оборотах двигателя.

          Где:
          M – это крутящий момент ( Н * м )
          ω — угловая скорость ( рад / сек )
          n — частота вращения коленчатого вала двигателя. ( мин -1)

          Как правило, во всех справочных автомобильных источниках, а также технических документации на транспортное средство, указывается эффективная мощность.

          • Эффективная мощность двигателя — это мощность, снимаемая с коленчатого вала двигателя. Не путать с номинальной мощностью двигателя.

          Где:
          VH – рабочий объем двигателя ( см 3)
          pe — среднее эффективное давление ( бар )
          n — частота вращения коленчатого вала двигателя. ( мин -1)
          K — тактовый коэффициент ( K=1 для двухтактного ; K= 2 для четырехтактного двигателя )

          • Номинальная мощность двигателя — это гарантируемая изготовителем мощность двигателя в режиме полного дросселя и заданной частоты вращения, то есть, при работе двигателя на номинальной частоте вращения при полной подаче топлива.
          • Охлаждение двигателя

          Чтобы избежать тепловых перегрузок, сгорание смазочного масла на направляющей поверхности поршня и неуправляемого сгорания из-за перегрева отдельных деталей, все части двигателя располагаемые вокруг камеры сгорания должны интенсивно охлаждаться. Используются две принципиальные схемы охлаждения: 

            • Непосредственное воздушное охлаждение. Охлаждающий воздух напрямую контактирует с нагретыми частями двигателя и обеспечивает отвод от них теплоты. В основе способа лежит принцип пропуска воздушного потока через оребренную охлаждаемую поверхность. Преимущества: надежность и почти полное отсутствие технического обслуживания. Удорожание стоимости отдельных деталей.
            • Непрямое (жидкостное или водяное) охлаждение, т.к. вода или другие охлаждающие жидкости обладают высокой теплоемкостью и обеспечивают эффективный отвод теплоты от нагретых поверхностей, большинство современных двигателей имеют жидкостные системы охлаждения. Система содержит замкнутых охлаждаемый контур, позволяющий применять антикоррозионные и низкозамерзающие присадки. Охлаждающая жидкость принудительно прокачивается насосом через двигатель и охлаждающий радиатор.
          • Система питания двигателя

          Двигатели внутреннего сгорания выпускаются с различными системами питания, самые известные из них:

          Система Ecotronic  это система электронного управления работой карбюратора состоящая из дроссельной и воздушной заслонок, поплавковой камеры, системы холостого хода, переходной системы и системы управления подачей воздуха на холостом ходу. Двигатели с этой системой являются более экономичными по сравнению с карбюраторными, но уступают впрысковым двигателям.

          Система Mono — Jetronic это электронно-управляемая одноточечная система центрального впрыска высокого давления, особенностью, которой является наличие топливной форсунки центрально расположения, работой которого управляет электромагнитный клапан. Распределение топлива по цилиндрам осуществляется во впускном коллекторе. Различные датчики контролируют все основные рабочие характеристики двигателя, они используются для расчета управляющих сигналов для форсунок и других исполнительных устройств системы.

          Система K- Jetronic — это электронно-управляемая система распределенного впрыска топлива. Она является механической системой, которая не требует применения топливного насоса с приводом от двигателя. Она осуществляет непрерывное дозирование топлива пропорционально количеству воздуха, всасываемого при такте впуска. Так как система производит прямое измерение расхода воздуха, она может учитывать изменения в работе двигателя, что позволяет использовать ее вместе с оборудованием для снижения токсичности отработавших газов.

          Система KE- Jetronic — это электронно-управляемая система распределенного впрыска топлива. Она является усовершенствованным вариантом системы K-Jetronic. Она содержит электронный блок управления для повышения гибкости работы и обеспечения дополнительных функций. Дополнительными компонентами системы являются: датчик расхода всасываемого в цилиндры воздуха; исполнительный механизм регулирования качества рабочей смеси; регулятор давления, поддерживающий постоянство давления в системе и обеспечивающий прекращение подачи топлива при выключении двигателя.

          Система L- Jetronic  это электронно-управляемая система распределенного впрыска топлива. Она сочетает в себе преимущества систем с непосредственным измерением расхода воздуха и возможности, представляемые электронными устройствами. Также как система K-Jetronic данная система распознает изменения в условиях работы двигателя (износ, нагарообразование в камере сгорания, изменение в зазорах клапанов), что обеспечивает постоянный оптимальный состав отработавших газов.

          Система L2- Jetronic — это электронно-управляемая система распределенного впрыска топлива. Эта система обладает дополнительными функциями по сравнению с теми, которые предлагает аналоговое устройство L-Jetronic.

          Система LH- Jetronic  схожа с L- Jetronic , различие заключается в методах измерения расхода всасываемого воздуха, так как в системе LH- Jetronic используется тепловой измеритель массового расхода воздуха. Поэтому результаты не зависят от плотности воздуха, которая изменяется в зависимости температуры и давления. 

          Система L3-Jetronic обладает дополнительными функциями по сравнению с теми, которые предлагает аналоговое устройство L-Jetronic. В электронном блоке управления системы L-Jetronic применяется цифровая обработка для регулирования качества смеси на базе анализа зависимости нагрузка / частота вращения коленчатого вала двигателя. 

          Система Motronic состоит из ряда подсистем. Принцип системы основан на том что зажигание и впрыск топлива объединены в одну систему. И поэтому отдельные элементы системы обладают повышенной гибкостью и возможностью управлять огромным количеством характеристик работы двигателя. 

          Система ME-Motronic эта система объединяет в себе систему впрыска топлива LE2-Jetronic , в которой помимо клапана дополнительной подачи воздуха в дополнительном воздушном канале, имеется повторный регулятор холостого хода, и систему полностью электронного зажигания VSZ.

          Система Mono-Motronic является скомбинированной системой зажигания и впрыска топлива на базе дискретного центрального впрыска топлива Mono-Jetronic.  

          Система KE-Motronic  является комбинированной системой зажигания и впрыска топлива на базе непрерывного впрыска топлива KE-Jetronic. 

          Система Sport-Motronic  является усовершенствованной комбинированной системой зажигания и впрыска топлива обладает повышенной гибкостью и позволяет эксплуатировать двигатель в условиях с максимальной скоростной нагрузкой. 

          Система впрыска CR (Common Rail) — это система питания дизельного двигателя, это так называемая аккумуляторная топливная система, которая делает возможным объединение системы впрыскивания топлива дизеля с различными дистанционно выполняемыми функциями и в тоже время позволяют повышать точность управления процессом сгорания топлива. Отличительная характеристика системы с общим трубопроводом заключается в разделении узла, создающего давление и узла впрыскивания. Это позволяет повысить давление впрыскивания топлива.

          • Количество коренных опор

          Количество коренных опор это параметр, влияющий на жесткость блока и на сопротивление различным нагрузкам коленчатого вала. Количеству коренных опор соответствует количество коренных подшипников скольжения. Количество шатунных подшипников скольжения равняется количеству цилиндров двигателя. 

          • Привод распредвала

          В мировом автомобилестроении получили распространение два типа привода распределительных валов:

            • Ременной привод — это привод, осуществляемый с помощью эластичного, но прочного ремня, имеющего поперечные насечки (зубчатый ремень) для улучшения зацепления. Преимуществом ременного привода является невысокая шумность работы, простота конструкции, и как следствие меньшая стоимость и невысокая масса узлов газораспределительного механизма.
            • Цепной привод — это привод, осуществляемый с помощью металлической цепи, которая своими звеньями приводит вращение зубчатых шестерен на коленчатом валу и распредвала. Основным преимуществом цепного привода является длительный ( по сравнению с ременным приводом) срок службы и повышенная надежность работы газораспределительного механизма.

          Влияние диаметра цилиндра и хода поршня на эффективный кпд двигателя внутреннего сгорания

          Автор: Юлиюс Мацкерле (Julius Mackerle)
          Источник: «Современный экономичный автомобиль» [1]
          42735 2

          Объём камеры сгорания в известной степени указывает на количество вводимой теплоты. Теплотворная способность поступающего заряда в бензиновом двигателе определена соотношением воздуха и топлива, близким к стехиометрическому. В дизель подаётся чистый воздух, а подача топлива ограничена степенью неполноты сгорания, при которой в отработавших газах появляется дым. Поэтому связь количества вводимой теплоты с объёмом камеры сгорания достаточно очевидна [2].


          Наименьшим отношением поверхности к заданному объёму обладает сфера. Тепло в окружающее пространство отводится поверхностью, поэтому масса, имеющая форму шара, охлаждается в наименьшей степени. Эти очевидные соотношения учитываются при проектировании камеры сгорания. Следует, однако, иметь в виду геометрическое подобие деталей двигателей разных размеров. Как известно, объём сферы равен 4/3∙π∙R3, а её поверхность — 4∙π∙R2, и, таким образом, объём с ростом диаметра увеличивается быстрее, чем поверхность, и, следовательно, сфера большего диаметра будет иметь меньшую величину отношения поверхности к объёму. Если поверхности сферы разного диаметра имеют одинаковые перепады температур и одинаковые коэффициенты теплоотдачи α, то большая сфера будет охлаждаться медленнее.


          Двигатели геометрически подобны, когда они имеют одинаковую конструкцию, но отличаются размерами. Если первый двигатель имеет диаметр цилиндра, например, равный единице, а у второго двигателя он в 2 раза больше, то все линейные размеры второго двигателя будут в 2 раза, поверхности — в 4 раза, а объёмы — в 8 раз больше, чем у первого двигателя. Полного геометрического подобия достичь, однако, не удаётся, так как размеры, например, свечей зажигания и топливных форсунок одинаковы у двигателей с разными размерами диаметра цилиндра.


          Из геометрического подобия можно сделать тот вывод, что больший по размерам цилиндр имеет и более приемлемое отношение поверхности к объёму, поэтому его тепловые потери при охлаждении поверхности в одинаковых условиях будут меньше.


          При определении мощности нужно, однако, учитывать некоторые ограничивающие факторы. Мощность двигателя зависит не только от размеров, т. е. объёма цилиндров двигателя, но и от частоты его вращения, а также среднего эффективного давления. Частота вращения двигателя ограничена максимальной средней скоростью поршня, массой и совершенством конструкции кривошипно-шатунного механизма. Максимальные средние скорости поршня бензиновых двигателей лежат в пределах 10—22 м/с. У двигателей легковых автомобилей максимальное значение средней скорости поршня достигает 15 м/с, а значения величины среднего эффективного давления при полной нагрузке близки к 1 МПа.


          Рабочий объём двигателя и его размеры определяют не только геометрические факторы. Например, толщина стенок задана технологией, а не нагрузкой на них. Теплопередача через стенки зависит не от их толщины, а от теплопроводности их материала, коэффициентов теплоотдачи на поверхностях стенок, перепада температур и т. д. Колебания давления газа в трубопроводах распространяются со скоростью звука независимо от размеров двигателя, зазоры в подшипниках определяются свойствами масляной пленки и т. д. Некоторые выводы относительно влияния геометрических размеров цилиндров, тем не менее, необходимо сделать.


          Преимущества и недостатки цилиндра с большим рабочим объёмом


          Цилиндр большего рабочего объёма имеет меньшие относительные потери теплоты в стенки. Это хорошо подтверждается примерами стационарных дизелей с большими рабочими объёмами цилиндров, которые имеют очень низкие удельные расходы топлива. В отношении легковых автомобилей это положение, однако, подтверждается не всегда.


          Анализ уравнения мощности двигателя показывает, что наибольшая мощность двигателя может быть достигнута при небольшой величине хода поршня.


          Средняя скорость поршня может быть вычислена как


          Cп = S∙n/30 (м/с),


          где S — ход поршня, м; n — частота вращения, мин-1.


          При ограничении средней скорости поршня Cп частота вращения может быть тем выше, чем меньше ход поршня. Уравнение мощности четырёхтактного двигателя имеет вид


          Ne = Vh∙pe∙n/120 (кВт),


          где Vh — объём двигателя, дм3; n — частота вращения, мин-1; pe — среднее эффективное давление, МПа.


          Следовательно, мощность двигателя прямо пропорциональна частоте его вращения и рабочему объёму. Тем самым к двигателю одновременно предъявляются противоположные требования — большой рабочий объём цилиндра и короткий ход. Компромиссное решение состоит в применении большего числа цилиндров.


          Наиболее предпочтительный рабочий объём одного цилиндра высокооборотного бензинового двигателя составляет 300—500 см3. Двигатель с малым числом таких цилиндров плохо уравновешен, а с большим — имеет значительные механические потери и обладает поэтому повышенными удельными расходами топлива. Восьмицилиндровый двигатель рабочим объемом 3000 см3 имеет меньший удельный расход топлива, чем двенадцатицилиндровый с таким же рабочим объёмом.


          Для достижения малого расхода топлива целесообразно применять двигатели с малым числом цилиндров. Однако одноцилиндровый двигатель с большим рабочим объёмом не находит применения в автомобилях, поскольку его относительная масса велика, а уравновешивание возможно лишь при использовании специальных механизмов, что ведёт к дополнительному увеличению его массы, размеров и стоимости. Кроме того, большая неравномерность крутящего момента одноцилиндрового двигателя неприемлема для трансмиссий автомобиля.


          Наименьшее число цилиндров у современного автомобильного двигателя равно двум. Такие двигатели с успехом применяют в автомобилях особо малого класса («Ситроен 2CV», «Фиат 126»). Сточки зрения уравновешенности, следующим в ряду целесообразного применения стоит четырёхцилиндровый двигатель, однако в настоящее время начинают применять и трёхцилиндровые двигатели с небольшим рабочим объёмом цилиндров, поскольку они позволяют получить малые расходы топлива. Кроме того, меньшее число цилиндров упрощает и удешевляет вспомогательное оборудование двигателя, так как сокращается число свечей зажигания, форсунок, плунжерных пар топливного насоса высокого давления. При поперечном расположении в автомобиле такой двигатель имеет меньшую длину и не ограничивает поворот управляемых колёс.


          Трёхцилиндровый двигатель позволяет использовать унифицированные с четырёхцилиндровым основные детали: гильзу цилиндра, поршневой комплект, шатунный комплект, клапанный механизм. Такое же решение возможно и для пятицилиндрового двигателя, что позволяет при необходимости увеличения мощностного ряда вверх от базового четырёхцилиндрового двигателя избежать перехода на более длинный шестицилиндровый.


          В дизелях помимо уменьшения потерь теплоты при сгорании большой рабочий объёмом цилиндра даёт возможность получить более компактную камеру сгорания, в которой при умеренных степенях сжатия создаются более высокие температуры к моменту впрыска топлива. У цилиндра с большим рабочим объёмом можно использовать форсунки с большим числом сопловых отверстий, обладающих меньшей чувствительностью к нагарообразованию.


          Отношение хода поршня к диаметру цилиндра


          Частное от деления величины хода поршня S на величину диаметра цилиндра D представляет собой широко употребляемое значение отношения S/D. Точка зрения на величину хода поршня в течение развития двигателестроения менялась.


          На начальном этапе автомобильного двигателестроения действовала так называемая налоговая формула, на основе которой взимаемый налог на мощность двигателя рассчитывался с учетом числа и диаметра D его цилиндров. Классификация двигателей осуществлялась также в соответствии с этой формулой. Поэтому отдавалось предпочтение двигателям с большой величиной хода поршня с тем, чтобы увеличить мощность двигателя в рамках данной налоговой категории. Мощность двигателя росла, но увеличение частоты вращения было ограничено допустимой средней скоростью поршня. Поскольку механизм газораспределения двигателя в этот период не был рассчитан на высокую оборотность, то ограничение частоты вращения скоростью поршня не имело значения.


          Как только описанная налоговая формула была упразднена, и классификация двигателей стада проводится в соответствии с рабочим объёмом цилиндра, ход поршня начал резко уменьшаться, что позволило увеличить частоту вращения и, тем самым, мощность двигателя. В цилиндрах большего диаметра стало возможным применение клапанов больших размеров. Поэтому были созданы короткоходные двигатели с отношением S/D, достигающим 0,5. Усовершенствование механизма газораспределения, особенно при использовании четырех клапанов в цилиндре, позволило довести номинальную частоту вращения двигателя до 10000 мин-1 и более, вследствие чего удельная мощность быстро возросла.


          В настоящее время большое внимание уделяется уменьшению расхода топлива. Проведённые с этой целью исследования влияния S/D показали, что короткоходные двигатели обладают повышенным удельным расходом топлива. Это вызвано большой поверхностью камеры сгорания, а также снижением механического КПД двигателя из-за относительно большой величины поступательно движущихся масс деталей шатунно-поршневого комплекта и роста потерь на приводы вспомогательного оборудования. При очень коротком ходе нужно удлинять шатун с тем, чтобы нижняя часть юбки поршня не задевалась противовесами коленчатого вала. Масса поршня при уменьшении его хода мало уменьшилась и при использовании выемок и вырезов на юбке поршня. Для снижения выброса токсичных веществ в отработавших газах целесообразнее применять двигатели с компактной камерой сгорания и с более длинным ходом поршня. Поэтому в настоящее время от двигателей с очень низким отношением S/D отказываются.


          Рис. 1
          Влияние отношения хода поршня S к диаметру цилиндра D на среднее эффективное давление pe гоночных автомобилей

          Зависимость среднего эффективного давления от отношения S/D у лучших гоночных двигателей, где четко видно снижение pe при малых отношениях S/D, приведена на рис. 1. В настоящее время более выгодным считается отношение S/D, равное или несколько большее единицы. Хотя при коротком ходе поршня отношение поверхности цилиндра к его рабочему объёму при положении поршня в НМТ меньше, чем у длинноходных двигателей, нижняя зона цилиндра не так важна для отвода теплоты, поскольку температура газов уже заметно падает.


          Длинноходный двигатель имеет более выгодное отношение охлаждаемой поверхности к объёму камеры сгорания при положении поршня в ВМТ, что более важно, так как в этот период цикла температура газов, определяющая потери теплоты, наиболее высока. Сокращение поверхности теплоотдачи в этой фазе процесса расширения уменьшает тепловые потери и улучшает индикаторный КПД двигателя.

          Последнее обновление 02.03.2012
          Опубликовано 27.09.2011

          Читайте также

          Сноски

          1. ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. — М.: Машиностроение, 1987. — 320 с.: ил.//Стр. 186 — 192 (книга есть в библиотеке сайта). – Прим. icarbio.ru
          2. ↺ Узнать больше о эффективном КПД. – Прим. icarbio.ru

          Комментарии

          Диаметр цилиндра и ход поршня

          Диаметр цилиндра и ход поршня

          Гленн

          Исследовательский центр

          На этой странице мы представляем некоторые технические определения, которые используются
          описать
          двигатель внутреннего сгорания.
          На рисунке показана компьютерная анимация одного цилиндра братьев Райт.
          Авиадвигатель 1903 года.Небольшой раздел
          коленчатый вал
          показан красным, поршень и шток показаны серым, а
          цилиндр, содержащий поршень, показан синим цветом. Мы сократили
          цилиндр, чтобы мы могли заметить движение поршня.

          Коленчатый вал делает один оборот при движении поршня.
          сверху цилиндра (внизу слева на рисунке)
          вниз (вверху справа) и обратно вверх.
          Поскольку поршень соединен с коленчатым валом,
          можно отметить движение поршня по углу поворота коленчатого вала.

          Нулевые градусы возникают, когда поршень находится в верхней части цилиндра. С тех пор
          360 градусов за один оборот, поршень находится внизу, когда угол поворота коленвала
          составляет 180 градусов. Расстояние, пройденное поршнем от нуля градусов до 180
          градусов называется ходом — S поршня.
          Это объясняет, почему двигатель Райта и современные автомобильные двигатели называют
          четырехтактные двигатели.
          Поршень совершает четыре хода, а коленчатый вал делает два оборота между
          сжигание.2/4

          Этот объем называется рабочим объемом , потому что
          Работа
          выполняется движущимся газом под давлением, равным давлению газа, умноженному на
          объем перемещаемого газа.
          Для своего двигателя 1903 года братья Райт выбрали диаметр цилиндра 4 дюйма и диаметр цилиндра.
          ход 4 дюйма. Объем рабочей жидкости для одного поршня составляет 50,26 куб.
          дюймы. Братья использовали четыре поршня, так что сумма всех рабочих
          объем 201 куб. дюйм. Для любого двигателя внутреннего сгорания сумма
          все рабочие объемы всех цилиндров
          называется полным рабочим объемом двигателя.


          Действия:


          Экскурсии


          Навигация ..

          Руководство для начинающих Домашняя страница

          Ход двигателя в зависимости от диаметра цилиндра

          Во времена Формулы-1, когда велась работа над двигателями V-10, нередко можно было увидеть обороты двигателя почти до 20 000 об / мин — число, которое вы никогда не увидите на дорожных автомобилях. Это стало возможным только благодаря чрезвычайно короткому ходу двигателя и широкому проходу. Джейсон Фенске из Engineering Explained выпустил видео, в котором рассказывается, как именно изменение размеров двигателя может развить большую мощность, даже если его общий рабочий объем остается прежним.

          Диаметр цилиндра двигателя — это диаметр каждого цилиндра, а ход — это расстояние внутри цилиндра, на которое перемещается поршень. По сути, максимальная мощность двигателя зависит от того, сколько оборотов он может развивать. Чем больше оборотов в минуту, чем больше ходов, тем больше мощности он выдает в целом. Поэтому логично, что самые мощные двигатели также имеют самые высокие обороты. Поскольку поршню с коротким ходом не нужно перемещаться так далеко за каждый цикл, он может преодолевать большее расстояние за то же время по сравнению с двигателем с более длинным ходом и меньшим внутренним диаметром.Это означает больше оборотов. Точно так же больший диаметр означает больший размер клапанов, а это значит, что он может всасывать и выталкивать больше воздуха в каждом цикле. А больше воздуха означает больше мощности.

          Работает и в обратном направлении. Допустим, ваша цель — эффективность, а не мощность. Таким образом, лучшим двигателем будет двигатель с маленьким диаметром цилиндра и большим ходом. Почему? Что ж, это немного сложнее, чем уравнение мощности, но оно включает площадь поверхности. По сути, чем больше площадь поверхности цилиндра во время сгорания, тем меньше энергии теряется на тепло, что приводит к более эффективному циклу.

          Но это всего лишь простые объяснения. Если вы хотите узнать все, что нужно знать о диаметре ствола и ходу поршня, посмотрите видео Фенске выше.

          Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

          Диаметр цилиндра или ход поршня: что дает больше мощности?

          Если вы не водите роторную Mazda, характеристики вашего бензинового или дизельного двигателя в значительной степени определяются его внутренним диаметром (шириной или диаметром цилиндров) и ходом (расстояние, которое поршень перемещается внутри цилиндра).

          Но если вы хотите увеличить мощность, что лучше: увеличить диаметр цилиндра или ход поршня? Джейсон Фенске из Engineering Explained разбирает это в сопроводительном видео.

          Если коротко, то больший диаметр отверстия, как правило, лучший способ получить больше мощности. Это создает больше места, позволяя увеличить отверстия для клапанов, что, в свою очередь, может подавать больше топлива и воздуха в цилиндр. Это плохо работает на низких оборотах, но работает на высоких оборотах. Это хорошо сочетается с другим фактором. Большее отверстие с более коротким ходом также позволяет двигателю увеличивать обороты, что создает больше лошадиных сил.

          И наоборот, длинный ход, как правило, лучше для топливной экономичности, потому что он уменьшает площадь поверхности во время сгорания. При меньшей площади поверхности остается меньше места для отвода тепла, что обеспечивает превращение большей части энергии сгорания в полезную работу по опусканию поршня.

          Малогабаритный длинноходный двигатель также требует, чтобы пламя перемещалось на меньшее расстояние во время сгорания, а это означает, что продолжительность горения короче. Это позволяет сгоранию снова выполнять больше работы и повышать эффективность двигателя.

          Однако это всего лишь обобщения. Двигатели с большим диаметром цилиндра могут быть эффективными, а двигатели с длинным ходом — мощными. Но, не глядя на какие-либо другие переменные, существует корреляция между размером отверстия и мощностью, а также между длиной хода и эффективностью.

          Диаметр цилиндра и ход поршня — не единственные факторы, влияющие на конструкцию двигателя, и поэтому это не жесткие правила. Масса вращающихся частей и использование турбонаддува или наддува могут повлиять на выходную мощность и эффективность.

          Если говорить о двигателе изолированно, то это лишь часть общей картины. Производительность двигателя в конечном итоге определяется автомобилем, в котором он используется. Выбор трансмиссии, а также вес и аэродинамика автомобиля также влияют на эффективность. В то же время мощный двигатель бессмысленен, если его нельзя передать на асфальт.

          Для большей глубины посмотрите видео выше. Как и во всех видеороликах по EE, вы обязательно расширите свои знания в области автомобильной техники.

          Отношение рабочего диаметра к цилиндру: ключ к эффективности двигателя

          Хотя существует множество факторов, влияющих на эффективность двигателя, основным фактором, который необходимо учитывать, является сама геометрия двигателя.Имеет значение не только общий размер двигателя, но и соотношение сторон цилиндров двигателя, определяемое отношением длины хода к диаметру цилиндра. Чтобы объяснить причину, необходимо учитывать три фактора: теплопередачу в цилиндре, продувку цилиндра и трение.

          Простые геометрические соотношения показывают, что цилиндр двигателя с более длинным отношением хода к диаметру цилиндра будет иметь меньшую площадь поверхности, подверженную воздействию газов камеры сгорания, по сравнению с цилиндром с меньшим отношением хода к диаметру цилиндра. Меньшая площадь напрямую ведет к снижению теплопередачи в цилиндре, увеличению передачи энергии на коленчатый вал и, следовательно, более высокому КПД.

          На продувку цилиндра — двухтактный феномен, при котором продукты выхлопа в цилиндре заменяются свежим воздухом — также сильно влияет соотношение рабочего диаметра цилиндра в двухтактном двигателе с оппозитными поршнями и однопоточной продувкой. . По мере увеличения отношения рабочего диаметра к внутреннему диаметру увеличивается и расстояние, которое свежий воздух должен пройти между впускными отверстиями на одном конце цилиндра и выпускными отверстиями на другом конце. Это увеличенное расстояние приводит к более высокой эффективности продувки и, как следствие, к меньшей работе насоса, поскольку меньше свежего воздуха теряется из-за короткого замыкания заряда.

          На трение в двигателе влияет соотношение длины и диаметра цилиндра из-за двух конкурирующих эффектов: трения в подшипниках коленчатого вала и трения силового цилиндра. По мере уменьшения отношения рабочего диаметра к внутреннему диаметру увеличивается трение подшипника, поскольку большая площадь поршня передает большие силы на подшипники коленчатого вала. Однако соответствующий более короткий ход приводит к уменьшению трения силового цилиндра, возникающего на границе раздела кольцо / цилиндр.

          В Achates Power мы провели обширный анализ во всех трех областях, чтобы правильно определить оптимальную геометрию двигателя, которая дает наилучшие возможности для создания высокоэффективного двигателя внутреннего сгорания.Моделирование цилиндров показало, что теплопередача быстро увеличивается ниже отношения хода поршня к диаметру около 2, моделирование систем двигателя показало, что работа насоса быстро увеличивается ниже отношения хода поршня к диаметру около 2,2 (из-за связанное с этим снижение эффективности продувки), а модели трения двигателя показали, что значения трения подшипников коленчатого вала и силового цилиндра по большей части компенсируют друг друга для нашего двухтактного двигателя с оппозитными поршнями.

          Здесь следует отметить, что в двигателе с оппозитными поршнями, где два поршня на цилиндр работают в противоположном возвратно-поступательном движении, «ход» является результатом комбинированного движения двух поршней и примерно вдвое превышает расстояние одного поршней перемещается за пол-оборота.Этот факт позволяет двигателю с оппозитными поршнями иметь гораздо большее отношение хода поршня к внутреннему диаметру, чем двигатель с одним поршнем на цилиндр, без чрезмерно высоких средних скоростей поршней, которые отрицательно сказываются на инерционной нагрузке и трении.

          Для контекста, ниже приведен график зависимости удельной мощности от отношения рабочего диаметра некоторых современных четырехтактных двигателей, предназначенных для широкого спектра применений. Обратите внимание, что все двигатели в таблице имеют головки цилиндров, поэтому ход описывает фактический ход поршня.Данные на графике показывают тенденцию, при которой двигатели, которым требуется высокая удельная мощность — например, в гоночных автомобилях — имеют малое отношение длины хода к диаметру цилиндра, а двигатели, требующие высокой топливной эффективности, — например, в тяжелых грузовиках и морских грузовые суда — имеют большое отношение длины хода к диаметру ствола.

          Ограничивающим фактором в этом соотношении являются силы инерции, возникающие в результате движения поршня. Для достижения высокой удельной мощности двигатель должен работать на высоких оборотах (до 18 000 об / мин для двигателя Формулы 1), что приводит к высоким инерционным силам, которые необходимо ограничивать с помощью небольшого отношения хода поршня к диаметру цилиндра.Для применений, требующих высокой эффективности, необходимо большое отношение длины хода к диаметру диаметра поршня и, опять же из-за инерционных сил поршня, требуется более низкая частота вращения двигателя и более низкая удельная мощность. Для морского применения с ходом 2,5 м частота вращения двигателя ограничена 102 об / мин.

          Для сравнения: двухтактный двигатель с оппозитными поршнями Achates Power разрабатывается с соотношением рабочего диаметра в диапазоне от 2,2 до 2,6. Этот диапазон значений отношения хода поршня к диаметру цилиндра позволяет нам создать высокоэффективный двигатель внутреннего сгорания, сохраняя при этом средние скорости поршня, сопоставимые с двигателями, доступными в настоящее время для средних и тяжелых условий эксплуатации.Любой двухтактный двигатель с оппозитными поршнями с отношением рабочего диаметра к цилиндру ниже 2 будет страдать от высокой теплопередачи в цилиндре и плохой продувки, которые снижают общую эффективность двигателя.

          Что такое «отношение цилиндров к цилиндру» и конструкция двигателя квадратной формы?

          Отношение диаметра цилиндра к длине хода поршня — это отношение размеров диаметра цилиндра двигателя к длине хода поршня. Диаметр отверстия цилиндра, деленный на длину хода, дает отношение диаметра цилиндра к длине хода. «Передаточное число-ход» является важным фактором, определяющим характеристики мощности и крутящего момента двигателя.

          Инженеры также классифицируют и классифицируют автомобильные двигатели в соответствии с их формой. Это форма цилиндров, если смотреть со стороны двигателя.

          В принципе, существует три типа геометрических форм, вокруг которых инженеры проектируют обычные двигатели. Это —

          Двигатель называется «квадратным двигателем», когда его диаметр цилиндра и длина хода почти равны, что образует геометрическую фигуру идеального «квадрата». Передаточное число цилиндрического двигателя составляет почти 1: 1.

          Например, двигатель с внутренним диаметром 83 мм и длиной хода 83 мм, который образует идеальный квадрат. Он обеспечивает идеальный баланс между скоростью и тяговым усилием.

          Следовательно, «Отношение диаметра ствола к ходу поршня» = 1: 1

          Что такое «квадратный двигатель» и как соотношение цилиндров и хода влияет на его конструкцию?

          Двигатель называется двигателем с квадратным поперечным сечением, если диаметр его цилиндра превышает длину его хода. В этой конструкции длина хода меньше диаметра цилиндра.Производители также называют его «короткоходным» двигателем. Как правило, более квадратная конструкция обеспечивает более высокие обороты двигателя. Поэтому инженеры называют его «скоростным» двигателем. Поскольку длина хода мала, поршню приходится перемещаться на меньшее расстояние. Следовательно, эта конструкция имеет тенденцию обеспечивать более высокую частоту вращения двигателя и обычно используется в высокоскоростных автомобилях и мотоциклах.

          Двигатель

          «Over-Square» имеет передаточное число цилиндра больше 1: 1.

          Квадратный двигатель

          Для, например, двигатель с внутренним диаметром 83 мм и длиной хода 67 мм, который образует «более квадратную конструкцию».

          Следовательно, «Отношение диаметра ствола к ходу поршня» = 1,23: 1

          Преимущества конструкции «над квадратом»:

          1. Меньшие потери на трение и нагрузка на подшипники.
          2. Более высокие обороты двигателя.
          3. Уменьшает высоту двигателя, тем самым опуская капот.

          Что такое двигатель «под квадратным углом» и как на него влияет соотношение цилиндров и ходов поршней?

          Двигатель называется двигателем «под квадратом», если у него более длинный ход. В этом двигателе длина хода больше диаметра цилиндра.Как правило, конструкция «под квадратом» имеет тенденцию создавать сравнительно более высокий крутящий момент. Поэтому инженеры также называют его «тяговитым» двигателем. Поскольку длина хода велика, поршню приходится перемещаться на большее расстояние, что приводит к увеличению крутящего момента двигателя. Следовательно, производитель обычно использует его в коммерческих транспортных средствах, таких как грузовики, автобусы и землеройное оборудование.

          Двигатель

          «Under-Square» имеет передаточное число цилиндров меньше 1: 1.

          Под квадратным двигателем

          Например, для двигатель с внутренним диаметром 70 мм и длиной хода 83 мм, который образует конструкцию «под квадрат».

          Следовательно, «Передаточное число цилиндра-ход» = 0,84: 1

          Преимущества конструкции «под квадрат»:

          1. Повышенный крутящий момент двигателя.
          2. Может тянуть более тяжелые грузы.

          Производители двигателей стараются достичь почти идеального передаточного отношения этих конструкций в зависимости от области применения, для которой они собираются разрабатывать двигатель.

          Диаметр цилиндра и ход поршня

          Читайте дальше: Как автомобильные двигатели классифицируются? >>

          О компании CarBikeTech

          CarBikeTech — технический блог.Его члены имеют опыт работы в автомобильной сфере более 20 лет. CarBikeTech регулярно публикует специальные технические статьи по автомобильным технологиям.

          Посмотреть все сообщения CarBikeTech

          Поршни не круглые: объяснение профиля и овальности

          Профиль и овальность — две основные характеристики конструкции поршня. Здесь мы рассмотрим, почему поршни не имеют идеально круглой формы.

          Возьмите июльский выпуск журнала Motocross Action Mag за 2018 год, чтобы получить полную информацию о печати.

          Когда вы смотрите на поршень, легко подумать, что он имеет идеально круглую цилиндрическую форму. В конце концов, они входят в круглое отверстие (цилиндр!). Так почему же они не должны быть круглыми?

          Дело в том, что внешняя форма поршня очень сложна. Двигатель внутреннего сгорания представляет собой агрессивную среду, в которой газы сгорания могут достигать опасных температур, а из-за неравномерного охлаждения цилиндров могут возникать окна портов и неровности поверхности. Разработка поршня, оптимизированного для условий камеры сгорания, является важной задачей.

          На протяжении многих лет материалы поршня и конструктивные характеристики, позволяющие компенсировать расширение при нагревании, претерпели изменения. Ковка поршней из алюминия обеспечивает большую прочность и долговечность, но ее необходимо использовать в правильной конструкции, чтобы должным образом оптимизировать работу поршня.

          (слева) Это пример ранней конструкции поршня, в которой в качестве основного материала использовалась сталь. Этого было бы недостаточно для требований современных двигателей. Сравните с разнообразием современных кованых алюминиевых поршней от Wiseco (справа) с различными покрытиями и дизайном.

          Подробнее о процессе ковки читайте здесь.

          Формы поршней имеют две основные характеристики: профиль и овальность. Менеджер по продукции Wiseco и многолетний инженер Дэйв Сулеки так прокомментировал эти характеристики поршня: «Профиль и овальность поршня являются одними из наиболее важных характеристик поршня, они действительно определяют не только то, как поршень будет изнашиваться с течением времени, но и насколько хорошо поршень может выполнить. Когда инженер рассчитывает зазор между поршнем и цилиндром, это только начало сложного определения окончательной геометрии поршня.«

          Профиль

          Если вы катите поршень по плоской поверхности, вы заметите, что он не катится по прямой. Вы наблюдаете за признаком номер один: профиль . Поскольку алюминий проводит очень много тепла, поршни имеют конус — верхняя часть поршня около головки имеет меньший диаметр, чем нижняя часть поршня около юбки. Юбка поршня на самом деле имеет так называемую цилиндрическую форму, как показано ниже. Это связано с тем, что температуры около купола поршня отличаются от температур на юбке поршня, что приводит к различным уровням расширения.Коническая форма позволяет поршню расширяться под воздействием тепла, поэтому поршень не заедает в отверстии цилиндра. Чем выше температура, тем больше расширится поршень. Задача проектирования состоит в том, чтобы рассчитать степень сужения. Слишком узкий зазор может вызвать задир или заедание из-за теплового расширения, а слишком маленький зазор может вызвать шум от поршневой породы.

          На этом рисунке показан профиль поршня: форма цилиндра и конусность поршней. Из-за этого измерение диаметра на юбках дает большее число, чем измерение около купола.

          «Профиль поршня имеет решающее значение для того, как поршень будет поддерживать себя, когда он совершает возвратно-поступательное движение в канале цилиндра. Например, профиль поршня должен помогать удерживать поршень в вертикальном положении в канале во время сгорания; представьте, что любой чрезмерный наклон поршня позволит поршню кольца, чтобы они «не сидели» и не плотно прилегали к стенке цилиндра », — уточняет Сулеки.

          Овальность

          Когда вы катите поршень по столу, вы также будете наблюдать, как поршень поднимается и опускается в движении «горб-горб-горб», очень похоже на колесо, имеющее плоское пятно.Эта характеристика называется овальностью, также известной как кулачок. Проще говоря, овальность означает, что поршень имеет наименьший размер на уровне отверстия под палец.


          Эта диаграмма осевой нагрузки иллюстрирует силу, создаваемую поршнями из стороны в сторону.

          Когда двигатель начинает свое движение, шатун движется не только вверх и вниз, но из-за аспекта вращения одновременно перемещается в сторону. Это действие со стороны шатуна и движение коленчатого вала создают нагрузочные силы на поршень вдоль плоскости шатуна на одной линии с вращением (известной как «ось тяги»).Чтобы поршень мог свободно перемещаться с этой боковой силой, поршень не может быть идеально круглым, иначе он заедет в круглое отверстие цилиндра. Придавая поршню овальность, поршень может свободно перемещаться вверх и вниз по мере необходимости. Задача дизайна — добиться правильной овальности. Слишком низкая овальность может привести к контакту поршня со стенкой цилиндра, ближайшей к концу поршневого пальца, в то время как слишком большая овальность может привести к тому, что поршень будет слишком сильно упираться в стенку цилиндра вдоль этой «оси тяги».«Слишком большая нагрузка вдоль оси тяги может привести к сильному истиранию или заеданию, когда поршень преодолевает барьер масляной пленки и напрямую контактирует со стенкой цилиндра.

          На этом рисунке показана овальность поршня. Эллипс со сплошной линией представляет диаметр поршня, как если бы вы смотрели вниз на купол.

          Дэйв Сулеки прокомментировал овальность,

          «Овальность — вещь неизвестная, когда большинство людей смотрят на поршень, они думают, что он круглый, и невооруженным глазом это должно быть так.Однако возьмите новый двухтактный поршень и прокатите его по столу, и что произойдет? Вы увидите неровный «бугорок, бугорок, бугорок», когда поршень катится по большой дуге… вы видите как профиль («конусообразную форму» поршня », так и овальность, поскольку поршень катится неравномерно. Овальность необходимо, чтобы поршень двигался вверх и вниз в отверстии цилиндра, так как коленчатый вал и шатун пытаются подтолкнуть поршень вверх, а сгорание вынуждает поршень опускаться, овальность позволяет поршню двигаться без заедания в круглом отверстии цилиндра.»

          Еще одно визуальное представление профиля и овальности поршня.

          Овальность — это ключевая деталь, которую следует помнить при измерении размера поршня. Поршень должен быть измерен в нижней части юбки, под углом 90 градусов от отверстия для пальца на запястье, чтобы получить точное измерение.

          При измерении диаметра поршня убедитесь, что вы используете подходящие инструменты. Не используйте штангенциркуль для измерения поршня (поршней), так как вы не получите точного измерения. Самый точный инструмент — это набор микрометров наружного диаметра.

          Размер поршня должен быть измерен по низу юбки, под углом 90 градусов от отверстия для штифта. Обратите внимание: отображаемые здесь измерения предназначены только для ознакомительных целей. Измерьте каждую из своих частей на точность.

          Некоторые поршни Wiseco имеют запатентованные покрытия юбки, такие как ArmorGlide или ArmorFit, которые предназначены для уменьшения износа, обеспечения более плавной и тихой работы и применяются в течение всего срока службы поршня. Для определенных поршней с покрытием юбки характеристики измерения зазора между поршнем и стенкой изменятся, поэтому обязательно ознакомьтесь с инструкциями, прилагаемыми к поршню (-ам).

          Щелкните здесь, чтобы узнать больше о наших различных покрытиях.

          Общие сведения о длине штока, высоте сжатия поршня и ходе коленчатого вала

          Двигатель — это непостоянная экосистема, в которой каждый компонент напрямую влияет на другой. Длина штока, ход коленчатого вала и высота сжатия поршня — это три переменные, которые являются ключевыми для выбора идеального вращающегося узла. Вот их определение и эффекты.

          Взаимосвязь между длиной шатуна, высотой сжатия поршня и степенью сжатия часто понимается неправильно, в основном из-за неправильного использования термина «сжатие».«Честно говоря, это, вероятно, не должно применяться к терминологии поршня, за исключением того, что касается объема поверхности днища поршня. Сжатие — это термин, связанный с объемом, который относится к степени сжатия. Он не имеет никакого отношения к механическому звену, создаваемому определенным ходом коленчатого вала и межцентровым расстоянием шатуна, или положением штифта, которое приводит головку поршня практически к верхнему краю отверстия.

          Если вы изучите прилагаемую диаграмму, вы заметите, что существует четыре основных размера, определяющих взаимосвязь кривошипа, штока и поршня.

          Мы часто говорим, что двигатель имеет определенную степень сжатия, например, степень сжатия 10: 1. Но это не подходящее использование, когда речь идет о механическом взаимодействии хода кривошипа и длины штока. Высота штифта является предпочтительным термином, и вы можете увидеть соотношение на иллюстрации выше. При фиксированной длине хода изменение длины штока влияет на две вещи, ни одна из которых не является степенью сжатия. Он определяет требуемую высоту пальца для приведения головки поршня вровень с декой блока в ВМТ.Это также влияет на скорость приближения и отхода поршня относительно ВМТ и в некоторой степени на время пребывания поршня в ВМТ.

          Основные размеры двигателя

          • Высота настила блока
          • Длина хода
          • Длина от центра до центра стержня
          • Высота пальца

          Ход кривошипа, шатун и поршень должны входить в размер блока по высоте так, чтобы дека поршня приходилась почти заподлицо с поверхностью деки в ВМТ.Поскольку ход кривошипа вращается вокруг своего центра в основном подшипнике, вы можете видеть, что только половина длины хода используется, когда поршень находится в ВМТ. Остальное расстояние занимает длина штока и высота пальца поршня. Итак, окончательный размер поршневого узла рассчитывается как:

          ½ длины хода + длина штока + высота пальца

          Поскольку высота блока фиксируется в узком окне, доступном для фрезерования палубы, комбинация длины хода, длины штока и высоты штифта должна составлять ту же высоту с небольшим допуском для желаемой высоты платформы и зазора между поршнем и головкой блока цилиндров, который также включает толщина прокладки.Обычной практикой в ​​кругах перформанса является обнуление блока. Это означает, что комбинация половины длины хода плюс длины штанги и высоты штифта равняется фиксированной высоте деки блока. Плоская часть верхней части поршня находится в точном соответствии с поверхностью деки блока. Это вынуждает производителя выбирать соответствующую толщину сжатой прокладки для регулирования зазора между поршнем и головкой. Неудивительно, что большинство рабочих прокладок головки в сжатом состоянии имеют толщину от 0,039 до 0,042 дюйма. Общепринятый минимальный зазор между поршнем и головкой со стальными шатунами составляет.035 дюймов.

          Более длинные штоки неизменно поднимают положение пальца выше в поршне, где он пересекает канавку масляного кольца. Поршневые производители, как алмаз предлагают простое решение с опорной направляющей маслосъемных колец. Опорные направляющие отлично справляются со своей задачей и позволяют использовать поршни очень малой высоты.

          Длина хода почти всегда выбирается первой, поскольку она связана с сочетанием диаметра отверстия и хода для желаемого смещения. Длину штанги обычно указывают в зависимости от области применения.Теории по этому поводу широко обсуждаются и часто противоречат друг другу, но, как правило, обычно выбирают более короткие штоки, чтобы добиться более быстрого отклонения от ВМТ, когда поршень начинает движение по каналу. Это быстрее открывает большее пространство для наполнения цилиндра, так что высокоскоростная система впуска может быстрее начать заполнять цилиндр. Он часто используется для улучшения отклика дроссельной заслонки в приложениях, которые часто подвергаются дросселированию.

          Поршни с более короткими штоками быстрее прибывают в ВМТ и не задерживаются надолго, прежде чем они быстро уйдут.Поршень быстрее достигает максимальной скорости и при меньшем угле поворота коленчатого вала, что снижает воздействие объема цилиндра в точке максимального перепада давления. Для обеспечения оптимальной эффективности в этих условиях требуется соответствующая синхронизация впускных клапанов. Поскольку поршень быстрее достигает максимальной скорости, впускной клапан можно открыть раньше, чтобы воспользоваться преимуществом разницы давлений в цилиндре. В этот момент открывается меньший общий объем цилиндра, но раннее начало потока будет вытеснять поршень по каналу, поскольку объемное воздействие быстро увеличивается.Это обычно называют более сильным натягиванием поршня на заряд из-за его повышенного ускорения.

          Более длинные штоки могут улучшить коэффициент хода штока, уменьшая осевую нагрузку на поршень. Популярное заблуждение состоит в том, что длина штанги влияет на смещение, а это не так. Только диаметр цилиндра и ход коленчатого вала изменяют рабочий объем двигателя.

          Во многих гоночных двигателях используются более длинные шатуны, чтобы уменьшить вес поршня, положительно влияя на форму кривой крутящего момента, положение и эффективность сгорания.Для более длинных штоков обычно требуются более короткие и легкие поршни. Это подталкивает кольцевой пакет к поршню выше. При использовании без наддува строители ценят это, потому что им нравится перемещать кольцевой пакет вверх, чтобы облегчить возвратно-поступательный узел, улучшить стабильность поршня и минимизировать несгоревшие газы в щели над верхним кольцом. Однако более длинные стержни в приложениях с наддувом могут быть проблематичными, потому что приложения с наддувом должны перемещать кольцевой пакет вниз по поршню, чтобы перемещать его подальше от чрезмерного нагрева.Более длинные штоки затрудняют выполнение этого, поскольку отверстие под штифт пересекает канавку масляного кольца. Во многих случаях для применений с наддувом может быть указан более короткий стержень, поскольку давление наддува снижает потребность в критических отношениях настройки стержня / хода, необходимых для эффективной работы без наддува.

          Фактически, шатуны обеспечивают дополнительный элемент настройки в двигателе для соревнований. Поскольку длина штока (от центра к центру) изменяется, она влияет на движение поршня, так что его можно использовать в качестве инструмента настройки.Влияя на ускорение и скорость поршня, он определяет скорость, с которой создается разница между атмосферным давлением (над карбюратором) и давлением в цилиндре во время такта впуска. Соответственно, это влияет на основные составляющие уравнения VE, то есть поперечные сечения впускного и выпускного трактов, синхронизацию клапана и оптимальную точку воспламенения.

          Этот размер блока от центральной линии главного отверстия определяет окончательную длину пакета кривошипа, штока и поршня в сборе.Это включает длину стержня, половину длины хода и высоту штифта. Длину стержня и высоту штифта можно изменять в зависимости от применения, но окончательный размер всегда определяется высотой блока.

          Более быстрое воздействие атмосферного давления улучшает наполнение цилиндра, и, таким образом, VE обеспечила размеры впускного тракта и синхронизацию времени клапана. Важно понимать, что и ускорение, и скорость поршня равны нулю в ВМТ и НМТ.Во всех промежуточных точках ускорение и скорость определяются длиной штанги. Для любой заданной длины штока поршень достигает максимальной скорости в точной точке хода относительно угла поворота кривошипа, где ось штока находится под углом 90 ° к ходу кривошипа (обычно около 70-75 ° угла поворота кривошипа). Эта точка представляет собой самую высокую степень воздействия падения давления в цилиндре и тесно связана с синхронизацией впускных клапанов для оптимального наполнения цилиндра.

          После выбора длины стержня у вас есть две части уравнения.Поскольку длина и ход штока теперь фиксированы, оставшейся переменной является высота штифта. Чтобы найти необходимую высоту штифта, сложите длину штанги и половину хода и вычтите результат из высоты деки блока. Блоки, которые не были декорированы, обычно обеспечивают коэффициент ложности около 0,020 дюйма. Это часто удаляется, когда блок равен нулю, чтобы соответствовать днищу поршня. На этом этапе производитель может оценить доступное пространство для пакета колец и определить, влияет ли более длинный стержень на расположение кольца.

          Хотя эти поршни выглядят почти одинаково, поршень слева разработан для более длинного штока (или хода).

Related Post

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *