Двухтактные авиационные двигатели: Легкие моторы «Авиамеханики»

Содержание

Легкие моторы «Авиамеханики»

Красноярское НПП «Автономные аэрокосмические системы» представило на HeliRussia 2016 свои разработки в сфере малогабаритных авиационных поршневых двигателей внутреннего сгорания (ДВС). Ранее компания самостоятельно разработала два беспилотных летательных аппарата, а также бортовое и наземное оборудование для них. Практически единственными покупными элементами для этих БЛА были двигатели, причем ввиду отсутствия отечественных пришлось использовать импортные.

Поскольку потребность в легких отечественных ДВС назрела уже давно, а сейчас только усилилась в рамках программы импортозамещения, в «Автономных аэрокосмических системах» взялись за создание линейки собственных двухцилиндровых двухтактных оппозитных бензиновых двигателей воздушного охлаждения, предназначенных для использования в легкомоторной авиации, на БЛА самолетного и вертолетного типов и в парамоторах.

К настоящему времени в этом направлении уже накоплен значительный опыт и создана линейка ДВС с мощностью от 6,8 до 28 л.с. Существенным достоинством красноярских двигателей является модульная конструкция, позволяющая собирать различные конфигурации для удовлетворения нужд широкого спектра заказчиков.

Первым образцом, реализованным в «железе», стал 20-сильный бензиновый двигатель 2B294. Он появился в 2012 г. Основной сферой его применения стала парамоторная техника. Идеологической основой 2B294 при разработке послужил немецкий Limbach L275E. На текущий момент на собственном производстве компании уже изготовлено и реализовано более 20 готовых моторов и комплектов для сборки в двух вариантах: карбюраторном и с централизованным впрыском.

Для ремоторизации БЛА «Гамма» в качестве замены двигателя фирмы 3W был создан 15-сильный ДВС типа 2B183. Работы по нему начались в июне 2015 г. На сегодня пройдены стендовые испытания и проводятся летные испытания на аппарате «Гамма». Летный образец укомплектован стартером, генератором и системой впрыска топлива. Основная задача летных испытаний – доводка системы впрыска для обеспечения минимального расхода топлива. Двигатель может выпускаться в трех комплектациях – карбюраторной, инжекторной и с генератором на 80–1000 Вт. Возможна его адаптация для использования керосина ТС-1 или JET A-1.

Кроме того, разрабатывается «младшая» модель – двигатель 2B88 мощностью 6,8 л.с. Пока он находится на этапе проектирования, подготовлена трехмерная модель.
Самый мощный из линейки двигателей красноярских разработчиков – 28-сильный 2B350. Он уже прошел испытания и в настоящее время производится мелкосерийно. Также может быть предложен в вариантах с карбюратором или моновпрыском. В настоящее время для управления этим двигателем началась разработка перспективной системы впрыска топлива. Проект предусматривает создание малоразмерных электронного блока управления и топливного насоса.

Расчетный назначенный ресурс двигателей 2В350, 2В294 и 2В193 составляет 1200 ч (для 2В88 – 1000 ч) с заменой цилиндро-поршневой группы каждые 300 (250) ч. В качестве топлива на них применяется автомобильный бензин АИ95 с добавкой 2% синтетического масла для двухтактных двигателей.

В 2016 г. для дальнейшего развития работ в сфере авиационных ДВС была образована специализированная компания «Авиамеханика», основной миссией которой является разработка, производство и продажа двигателей, а также систем и комплектующих для них. В ближайших планах компании – создание гибридных силовых установок и четырехцилиндровых двухтактных двигателей большого объема на базе разработанных двухцилиндровых ДВС, а также четырехтактного двигателя мощностью 100–120 л.с. Идут работы по созданию высоконадежной системы впрыска тяжелых типов топлива и стартера-генератора прямого привода.

Поиск надежных заказчиков – основная задача успешного развития компании. Главный конструктор Егор Крылов говорит, что «на текущий момент ставится задача организации поставок двигательных установок для корпоративных заказчиков и планируется выход на массовый рынок моторов для СЛА».

 

Печатная версия материала опубликована в журнале «Взлёт» № 6/2016

Авиационные поршневые двигатели XXI века

1 Декабря 2017


До середины прошлого века поршни и цилиндры оставались главным источником лошадиных сил для крылатых машин, но затем пламенные сердца авиации завоевала турбина. Однако старая любовь не ржавеет. На рубеже веков возникла потребность возрождения поршневого авиадвигателестроения в России. И вновь, как и в 1930-х годах, движущей силой этого процесса стал ЦИАМ. О том, что собой представляет авиационный поршневой двигатель (АПД) XXI века, рассказывает начальник отдела «Авиационные поршневые двигатели» ФГУП «ЦИАМ им. П.И. Баранова» (входит в состав НИЦ «Институт имени Н.Е. Жуковского»), кандидат технических наук Лев Аронович Финкельберг.

С чем связана активизация работ по АПД в ЦИАМ?


Это направление в ЦИАМ никогда не угасало, хотя, конечно, после перехода Института на реактивную тематику в конце 1940-х годов объем работ по поршневым двигателям резко сократился, и они проводились в основном по двигателям, серийный выпуск которых продолжался. К началу 1980-х годов в производстве остались только АШ-62 для Ан-2 и М-14П для учебно-тренировочных и спортивно-пилотажных самолетов Як-18, Як-52, Су-26.


Однако в 1980-е годы началось развитие беспилотной авиации, в связи с чем в ЦИАМ был создан сектор поршневых двигателей. Они оказались востребованными в беспилотных летательных аппаратах (БЛА) среднего класса со взлетным весом до тонны. Для аэрофотосъемки и мониторинга высокие скорости не нужны, а требуется малый удельный расход топлива, и поршневые двигатели как раз обладают этим качеством. При мощностях до 500 л.с. и при полетном цикле продолжительностью более 5 часов на сегодняшний день они успешно конкурируют с газотурбинными двигателями. Поршневые двигатели немного проигрывают ГТД по массе, но за счет меньшего расхода топлива суммарная масса двигателя и горючего на борту при достаточно длительном полете получается меньше. Еще одним большим преимуществом является то, что час эксплуатации АПД обходится дешевле, чем эксплуатационный час ГТД.

А как выглядят поршневые двигатели в сравнении с электрическими?


Хотя сами электродвигатели достаточно компактны, оборудование для их работы — аккумуляторы и другое — пока еще слишком тяжелое. Если полетный цикл короткий, то использование электрического двигателя оправдано, но при длительном цикле АПД выигрывают. Заряда аккумуляторов надолго не хватает, или надо возить на борту тяжелую и сложную энергоустановку для их подзарядки. Перспективным направлением, которым мы сейчас будем заниматься, являются гибридные силовые установки: поршневой двигатель вращает генератор, а тот — питает электродвигатель. Так легче создать распределенную силовую установку: когда несколько электродвигателей с винтами размещаются на крыльях или в других местах на планере. Электрическая трансмиссия в таком случае проще и легче, чем механическая, что дает возможность создавать ЛА любых схем, на которые только хватит фантазии конструкторов.


Еще одна интересная возможность состоит в том, чтобы снабдить поршневой двигатель электромотором, который будет давать дополнительную мощность на взлете и работать как генератор в полете. Благодаря этому не придется делать переразмеренный поршневой двигатель, который на 100% используется только на взлете.

В мире накоплен гигантский опыт по автомобильным поршневым двигателям. Зачем нужны еще какие-то разработки? Чем отличается АПД от обычного автомобильного ДВС?


АПД от автомобильных двигателей отличается, прежде всего, режимом работы. Автомобильные ДВС, хотя и рассчитаны до 6000 оборотов, работают в основном в диапазоне до 2500-3000 оборотов, причем в динамике: трогание, разгон, торможение. АПД с точки зрения автомобильного мотора постоянно работает как бы в красной зоне, ведь его крейсерский режим — это 75% от взлетного. И при этих нагрузках необходимо добиться достаточного ресурса и надежности. В авиации другие нормы прочности, необходимо обеспечить ее запас, причем такой, какого нет у автомобилистов.


Кроме того, с точки зрения безопасности системы АПД должны быть дублированными, причем, если одна система отказывает, то вторая должна обеспечить падение характеристик не более чем на 2-3% от максимального режима. Соответственно, конструктивно в АПД многое выполняется иначе. К примеру, устанавливаются две независимые системы зажигания, у которых даже электропитание должно осуществляться от разных источников.


Далее, автомобильные двигатели, как правило, выполняются с масляным поддоном, а в авиации нужно обеспечить работоспособность маслосистемы при крене и тангаже самолета. А уж обеспечение, к примеру, перевернутого полета — это вообще отдельная тема.


В авиации не так просто применить новые материалы. Для этого должна быть проведена большая работа по подтверждению всех характеристик материала, только после этого его вносят в реестр допущенных для использования в авиации. В автомобильной же промышленности это сделать проще.


Авиационный двигатель отличается от автомобильного еще и условиями эксплуатации: к примеру, вся агрегатика в автомобильной промышленности в основном рассчитана на температуру максимум до минус 40°С, а мы должны обеспечить минус 56°С. Это тоже предъявляет повышенные требования, особенно к электронике, резинотехническим изделиям и уплотнениям.


К АПД предъявляются очень жесткие требования, и когда мы приходим к автомобилистам и говорим, что в принципе ваш агрегат нам подходит, но нужно его доработать, то многие оказываются не готовы применять наземную технику в авиации. Для производителей автомобильных агрегатов, которые привыкли к заказам в миллионы единиц, наш рынок все равно достаточно узкий, поскольку мы говорим в лучшем случае о сотнях изделий в год. При этом доработок и испытаний надо проводить много, и ответственность тоже на порядок выше. Поэтому многие отказываются.


Условно говоря, авиационные и автомобильные двигатели схожи по принципу действия, но очень сильно отличаются по исполнению и агрегатам. Поэтому НИР и ОКР по ним нужно проводить отдельно.

Расскажите о работах ЦИАМ по АПД в 1990-е и 2000-е годы.


По беспилотникам в эти годы был создан комплекс с небольшим поршневым двигателем П-032 мощностью 32 л.с., который производился в Самаре на фирме «Кузнецов».


Кроме того, мы занимались модернизацией существующих двигателей типа М-14, изучали возможность применения впрысковой системы вместо карбюратора, занимались сертификацией. В то время мы как раз сертифицировали двигатель М-9Ф Воронежского механического завода, современную версию М-14П, которая устанавливалась на спортивных самолетах Су-26М.


Тогда же начиналась работа с «Сухим» по сельхозсамолету Су-38П с поршневым двигателем, но, к сожалению, она не получила логического завершения. Когда было безвременье, то все схватились за идею возрождения малой авиации. Какие-то проекты были даже реализованы: «Молния-1», Ил-103, И-1Л, самолет-амфибия Л-6, тот же Су-38П. В 2000-е годы разрабатывались и вертолеты с поршневыми двигателями: Ми-34 под М-14В26В и «Актай» с роторно-поршневым двигателем ВАЗ-426. Оба вертолета летали.

Было время, когда заговорили о ренессансе малой авиации в России…


К сожалению, должного развития это направление не получило. Дело в том, что в 2000-е годы было порушено очень много наземной инфраструктуры, особенно это коснулось небольших аэродромов, которые как раз и нужны малой авиации. Создать летательный аппарат можно в достаточно короткие сроки, а вот быстро восстановить инфраструктуру сложнее. Но в последние годы появилась идея, что перевозки должны базироваться в крупном хабе и осуществляться так, чтобы можно было вернуться без дозаправки. То есть нужна просто взлетная полоса. Здесь тоже становится выгодным применение поршневой авиации, поскольку время полета превышает 4-5 часов.

Каково положение с производством АПД в России сегодня? Какие работы ведутся, и как в них участвует ЦИАМ?


На сегодняшний день, кроме М-14 в Воронеже, поршневые двигатели в России серийно не производятся. Однако потребность в них есть. В настоящее время ведутся ОКР по созданию двигателей в классе мощности 50 л.с., 120 л.с. и 300 л.с. По срокам мы немного отстаем, но, я думаю, в конце концов добьемся успеха, потому что АПД в этих классах востребованы и, я надеюсь, их появление даст толчок развитию гражданской малой и беспилотной авиации.


Задержки в разработке происходят по разным причинам, одна из них — отсутствие постоянных соисполнителей по агрегатам. В связи с этим ЦИАМ при проведении НИР фактически занимается налаживанием кооперации по разработке и производству АПД, хотя это не совсем наша обязанность. Но мы вынуждены этим заниматься, поскольку и в 1990-е годы, и сегодня возникает одна и та же проблема: после переориентирования авиации на ГТД потребность в поршневых двигателях сократилась до десятка двигателей в год, а это ударило не только по производителям самих двигателей, но и по поставщикам агрегатов. Никому не интересно производить 10-20 штук в год. Поэтому постепенно поставщики агрегатов в стране пропали. И нам пришлось, с чем мы и до сих пор бьемся, заниматься восстановлением инфраструктуры и кооперации производства АПД.


В 2012 году совместно с Гаврилов-Ямским машиностроительным заводом «Агат» мы сделали двигатель-демонстратор именно для отработки технологии и создания кооперации. Это 4-цилиндровый, 4-тактный двигатель мощностью 90 л.с., объемом 1400 см3 и с маркировкой ПД-1400. На основании этой разработки позже «Агат» открыл ОКР на двигатель этого класса мощности, и в этом проекте используется большая часть налаженной кооперации по агрегатам. Получилось, что ЦИАМ подвиг «Агат» и поставщиков агрегатов на разработку поршневых двигателей, поскольку в 2000-е проблема состояла и в том, что не было предприятий, готовых к работе в этой области.


Мы специально искали относительно небольшое предприятие, для которого эта продукция стала бы основной. К этому времени мы уже имели негативный опыт 1990-х годов, когда за разработку двигателя брались крупные фирмы, такие как Воронежский механический завод или Автоваз. Но потом, когда наладился основной бизнес, это направление им стало не интересно, и свои разработки они просто закрыли. Не потому, что у них что-то не получилось или не было заказчика. А потому, что это нерентабельно. Поэтому мы вынуждены были параллельно с разработкой двигателя искать основных исполнителей. Владимир Алексеевич Скибин, в то время руководивший Институтом, предложил директору завода «Агат» взяться за разработку. Дело пошло и успешно развивается. Так что можно сказать, что ЦИАМ является инициатором возрождения поршневого двигателестроения в России.

Расскажите о вкладе ЦИАМ в разработку АПД в других классах мощности.


50-сильный двигатель сейчас разрабатывается АО «КБ «Луч» в Рыбинске. Это двухтактный, двухцилиндровый оппозитный двигатель. К сожалению, у нас сохраняется не очень хорошая традиция: разрабатывать летательный аппарат начали раньше, чем двигатель, соответственно, пока пришлось применять импортный мотор. Сейчас стоит вопрос о его замещении, но конструктивно мы уже на него сориентированы, и другую схему предложить не можем. Мы вынуждены ее повторять, но предлагаем новые системы, ищем свои материалы, датчики, согласуем систему управления с летательным аппаратом. Кроме этого, большой объем работ по АПД ЦИАМ проводит в части испытаний в ожидаемых условиях эксплуатации, то есть в термобарокамере с имитацией высоты, температур и даже скоростей полета. Как правило, мы требуем, чтобы к нам на испытания приходила целиком силовая установка, то есть двигатель с воздушным винтом и капотом. В конце 1990-х годов мы специально для подобных испытаний разработали, изготовили и аттестовали винтовые стенды.


В ЦИАМ создавался и демонстратор дизеля мощностью 300 л.с. Это был НИР для отработки технологий. Необходимо было показать на демонстраторе, что эти технологии работают и доступны для промышленного производства в России. Был предложен вариант дизеля для беспилотного вертолета, по которому тот же «Агат» сейчас ведет ОКР как продолжение работы, начатой ЦИАМ по двигателю-демонстратору. ЦИАМ может вести только НИР, для ведения ОКР и освоения серийного производства необходимо получение дополнительных лицензий. Мы отрабатываем отдельные узлы, технологии, системы и доводим их до 5-го уровня технологической готовности, после чего, в случае получения положительного результата, принимается решение о продолжении работ на одном из предприятий промышленности.


Мы проводим расчеты, подбираем материалы, чтобы обеспечить необходимые надежность и прочность. При нашем участии была создана кооперация по изготовлению демонстратора, мы заказывали компоненты, по нашему техническому заданию их изготавливали, а сборку делали в ЦИАМ. Этими работами мы показали, что создать АПД в России можно.

Чем вызвано применение дизелей в авиации?


У дизеля расход топлива еще меньше, чем у бензинового мотора, и гораздо меньше, чем у ГТД. Не менее существенно, что дизель может работать на авиационном керосине, который производится массово, в то время как для бензиновых АПД требуется авиационный бензин. Автомобильным бензином его заправлять нельзя, так как в таком горючем очень много ароматических углеводородов, и на высоте он проявляет склонность к повышенному парообразованию, то есть закипанию. А авиационного бензина в России сейчас не стало, во-первых, потому что запретили добавлять тетраэтилсвинец, то есть этилированные бензины исчезли. Во-вторых, и это основное: нефтеперерабатывающим заводам невыгодно производить его в малых количествах. В результате, кто-то завозит бензин из Финляндии или Польши, и, естественно, он гораздо дороже, чем автомобильный бензин или авиационный керосин. Кто-то на свой страх и риск все же использует автомобильный бензин, но с учетом того, что летать на нем можно только на небольшой высоте. Мы пытались ввести регламент на использование автомобильного бензина на АШ-62 и на М-14. На АШ-62 это не получилось сразу, потому что уже на земле идет перегрев на взлетном режиме из-за более высокой, чем у авиационного бензина, тепловой отдачи.


Интересно, что работы над первым отечественным авиационным дизелем АН-1 велись в ЦИАМ под руководством А.Д. Чаромского еще в 1930-е годы. Наработки по этому проекту были использованы при создании легендарного В-2 для танка Т-34. И вот теперь дизель возвращается в авиацию, но уже в связи с появлением новых технологий с переходом на алюминиевые корпусные детали, которые появились сначала в автомобильной промышленности и позволили значительно облегчить конструкцию дизеля, что открыло ему дорогу к использованию в легковых автомобилях, а далее — в летательных аппаратах.


Чем характеризуется мировой уровень в разработках современных АПД? Есть ли понятие поколений АПД?


В АПД нет такого понятия, как двигатели разных поколений. Поршневой двигатель и у нас, и на Западе остается достаточно консервативной конструкцией, и его схема кардинально не менялась с 1940–50-х годов. Базовые двигатели разработки наиболее известных западных фирм, таких как Lycoming и Teledyne, в течение нескольких десятилетий остаются в том же типоразмере и конфигурации. Единственное, что можно отметить: обновляются обеспечивающие работу двигателя системы, появляются, например, впрысковые системы с электронным управлением с полной ответственностью типа FADEC, которые значительно снижают расход топлива, внедряются новые материалы.


Основное направление развития АПД на Западе — это то, чем занимаемся и мы: переход на новые системы, на новые масла, на новые топлива. В чем мы отстаем, так это в агрегатике, которая у нас не развивалась ни в авиации, ни в автомобильной промышленности. Те же форсунки везде применяются импортные — и в наземной технике, и в авиационной, хотя сейчас ведутся работы по созданию отечественных форсунок и для дизеля, и для бензинового АПД.


Так что говорить о смене поколений или о резком скачке в характеристиках АПД не приходится. Единственное принципиальное новшество состоит в том, что с середины 2000-х годов во всем мире стали внедряться авиационные дизели, использование которых интересно с точки зрения снижения расхода топлива и применения авиационного керосина.

Давайте все же поговорим об АПД нетрадиционных схем. Например, о роторно-поршневых двигателях. В автомобильной промышленности этот тип двигателя не прижился. А какие у него перспективы в авиации?


Работы по роторно-поршневым двигателям достаточно успешно ведутся во всем мире. Среди автомобильных компаний в этом направлении преуспела Mazda. Активно занимался этой темой и Автоваз, который вполне успешно оснащал роторно-поршневыми двигателями мощностью 120 л.с. «восьмерки» и «девятки» для МВД. Изготавливались и авиационные варианты, но затем их производство в Тольятти было прекращено. В автомобильной промышленности, прежде чем выпустить продукт на рынок, необходимо обеспечить его сервис в тех точках, где вы намерены его продавать, а эта задача достаточно непростая. Поэтому потеснить поршневые двигатели в наземном транспорте сложно. Роторно-поршневой мотор Mazda несколько лет признавался лучшим в своем классе, однако широкого распространения так и не получил.


Но если говорить об авиационном использовании, то я могу назвать как минимум шесть фирм, которые сейчас делают роторно-поршневые двигатели для беспилотников. БЛА с такими двигателями уже летают в Англии, Германии, Израиле.


У этого типа двигателей много достоинств: он компактен, у него малые вибрации и очень хорошая отдача по весу, он гораздо проще поршневого двигателя по количеству деталей, достаточно экономичен. Еще одно его достоинство — модульность: отработав одну секцию, можно создать унифицированный ряд двигателей, используя одну, две или три секции. Собрать вместе четыре модуля уже сложно, нужно много опор. Мы исследовали роторно-поршневой двигатель Mazda 13B и разработали свою секцию мощностью 90 л.с., что в дальнейшем позволит создать без больших дополнительных затрат двигатели мощностью 180 и 270 л.с.


В ЦИАМ уже создан демонстратор роторно-поршневого двигателя, он прошел на нашем стенде холодную обкатку и в данный момент времени «крутится» уже в горячую.


Важное направление исследований — это применение керамики в двигателях этого типа. ЦИАМ выиграл конкурс Фонда перспективных исследований по применению керамики на базе карбида кремния в роторно-поршневом двигателе для увеличения его ресурса. Будем делать из керамики вставку статора, все уплотнения и напыление на крышке.


Эта работа рассчитана на три года. Мы ее только начинаем, но уже к концу следующего года должен появиться работающий демонстратор для подтверждения заявленных технических характеристик, в том числе по высотности и по температуре окружающего воздуха в термобарокамере.

ЦИАМ на всевозможных выставках не раз демонстрировал поршень и гильзу из композиционного материала. Для роторно-поршневого двигателя будет использован тот же материал?


Поршень и гильза из керамики могут работать без смазки, поэтому мы и стремимся их внедрить. Мы испытывали их сначала со смазкой, причем поршни мы делали бесколечные, с минимальными зазорами. Тепловые расширения при использовании композитов посчитать трудно, поскольку применяется достаточно сложный многокомпонентный состав материала. Мы знаем, что цилиндр и поршень из алюминия в результате тепловых напряжений становятся овальными, а как себя поведет керамика, предсказать очень сложно. С первыми образцами у нас сразу ничего не получалось. Но потом мы нашли способ обойти эту трудность за счет изменения структуры материала. Что касается роторно-поршневого двигателя, то сейчас идут исследования и прочностные испытания различных типов материала, который в дальнейшем и будет применен в РПД.


Собственно, это и есть основная работа ЦИАМ: исследования новых технологий, материалов и конструктивных решений, их испытания. Причем испытания сначала идут на наших стендах в наземных условиях, а если они завершаются удачно, то мы переходим к испытаниям в ожидаемых условиях эксплуатации.

Не могу не задать Вам как специалисту по АПД вопрос о бесшатунном двигателе Баландина. Каков все же практический потенциал этого изобретения? Многие считают этот тип двигателя незаслуженно забытым.


Это не совсем так. Да, схема интересная. Благодаря отказу от кривошипно-шатунного механизма уменьшается трение между поршнем и цилиндром. Есть энтузиасты, например, в МАИ, которые продолжают развивать эту идею. К нам каждый год приходят несколько изобретателей с новыми вариантами усовершенствования баландинской схемы. Но ее основная проблема в большей степени — технологическая. Она связана с кулисой для передачи усилий со штока на вал. Из-за высоких нагрузок не удается обеспечить приемлемый ресурс этого механизма.


В целом же все схемные решения по поршневым двигателям уже были проверены в 1950–60-е годы: и аксиальная схема, и роторно-поршневой двигатель, и схема Баландина. Сергей Степанович Баландин, кстати, тоже работал в ЦИАМ и здесь создал двигатель, который работал и развивал мощность, но только до 2000 оборотов. В НАМИ много занимались этой схемой в 1980-е годы. Ее не забыли, и государство вкладывало в эти исследования большие деньги, но результата не было. Работоспособную конструкцию создать удалось, но не удалось сделать именно двигатель с нормальным ресурсом и нужными характеристиками.


Расскажите о работах ЦИАМ по турбокомпаундному двигателю.


Турбокомпаундная схема тоже известна уже достаточно давно. В ЦИАМ когда-то занимались и такими двигателями, а созданный при участии Института в 1950 году турбокомпаундный ВД-4К стал вершиной отечественного поршневого двигателестроения. В автомобилях же она в свое время применялась Volvo. Суть ее в том, что энергию от выхлопных газов, чтобы она не пропадала, срабатывают на силовой турбине, от которой мы можем или приводить генератор и получать дополнительную электроэнергию, или использовать эту прибавку непосредственно для увеличения мощности двигателя. Если в традиционном турбонагнетателе мы просто подаем в камеру больший топливный заряд, то здесь речь идет о более полном использовании энергии выхлопных газов, которая позволила бы запитывать, к примеру, бортовые системы, не отбирая мощность у двигателя.


У нас проработано несколько схемных решений использования такой турбины, просчитана сама турбина и электрическая часть. Планируем в этом году доработать математическую модель турбокомпаундного двигателя, посмотреть, какой эффективности мы добьемся в типоразмере на 500 л.с. Мы изучали варианты на 150, 300 и 500 л.с. При 150 л.с. использование этой схемы невыгодно по весовым характеристикам, а вот для 300 и 500 л.с. это уже интересно.

В планах ЦИАМ добиться резкого увеличения характеристик АПД к 2025–30 годам: снизить удельный расход топлива на 20-25%, удельную массу — на 25–30%, повысить ресурс и стоимость эксплуатации в 3–4 раза. За счет чего предполагается достигнуть такого прогресса?


За счет применения новых материалов и технологий, новых систем управления, включая систему непосредственного впрыска топлива, работ по применению синтетических масел и топлив, использования методики ЦИАМ по уменьшению масляного зазора между поршнем и цилиндром, позволяющей снизить расход топлива. Ведутся работы по уменьшению веса поршня, шатуна, колец, коленвала за счет использования интерметаллидов и композиционных материалов, по улучшению наполнения цилиндра и снятию большей работы с единицы объема. Оптимизируется геометрия впускного канала и расположения форсунки для улучшения испарения топлива на впуске. Изучаются новые алгоритмы управления рабочим процессом двигателей (стратификация заряда, гомогенное сгорание ТВС) и технологии системы управления с высокими энергиями зажигания и электронной многопараметрической системой управления рабочим процессом. Мы занимаемся отработкой перспективных систем наддува и системы снабжения двигателя воздухом, включая его охлаждение после компрессора. В наших планах — использование альтернативных видов синтетических топлив на основе углеводородных фракций пропан-бутанового ряда. Все эти составляющие дают значительный суммарный эффект, что и позволяет нам рассчитывать на достижение требуемых показателей.

Flight. 178 1940 г. Авиационный инженер. Двухтактные дизельные двигатели.





Двухтактные дизельные двигатели


14 марта 1881 года сэр Дугалд Клерк подал патентную заявку «Улучшения в двигателе, работающем на горючем газе или паре». Это было датой рождение двухтактного двигателя. Несмотря на некоторые очевидные преимущества, только в последние годы двухтактный цикл был тщательно изучен. В 1932 году сэр Дугалд Клерк писал: «Двухтактный двигатель заслуживает особого внимания, и лучший тип будет в виде двигателя на тяжёлой нефти с воспламенением от сжатия». Мнения сэра Дугальда Клерка имеет большой вес, и в настоящее время быстро растет убежденность, что двухтактный двигатель слишком долго игнорируется.


Г-н W.S. Burn, в своей лекции «Применение двухтактного двигателя на тяжёлой нефти для авиации», прочитанной в начале года в Институте инженеров и судостроителей Северо-Восточного побережья в Ньюкасл-он-Тайн, определенно встает на сторону двухтактного цикла. В начале своей статьи он излагает потенциальные преимущества двухтактного двигателя на тяжелой нефти над четырехтактным бензиновым двигателем. В своем резюме автор высказывается, что снижение веса двигателя принципиально возможно, и что среди преимуществ двухтактных: более высокая надежность; меньший риск пожара; больший радиус действия; уменьшение эксплуатационных расходов; отсутствие электрического воспламенения и соответственно отсутствие радиопомех; нет проблем с карбюрацией; большая простота управления; более легкий капитальный ремонт, облегченное охлаждение; большая мощность для заданного веса; более высокая производительность на высоте и более надежный запуск.

Внушительный перечень преимуществ, который отнюдь не разделяется теми, кого г-н Бэр называет страдающими «от особо сильного бензинового комплекса».

Накопленный опыт


Можно выделить следующие важнейшие вехи в развитии дизельного двигателя: Junkers Jumo; Packard; Deschamps; Guiberson ; Clerget; Coatalen , Salmson ; Talhot; Zod ; Beardmore ; Bristol Phoenix ; Rolls-Royce Condor и различные британские экспериментальные типы рукавных клапанов*. Главные разработки были сделаны за рубежом, и наибольший прогресс был достигнут на двухпоршневом двигателе Юнкерса, единственным коммерческим двигателем.

Подвергались экспериментам практически все авиационные, в основном четырехтактные, двигатели в диапазоне мощностей от 250 до 1000 л.с. Двигатель обычно считался неперспективным в диапазоне от 2(1/4) до 3 lb./b.h.p., а расход топлива составлял около 0,38 lb./b.h.p./hr. (фунта при эффективной мощности -brake horsepower- л.с./час), хотя утверждается, что двигатель Coatalen имеет расход всего 0,3 lb./b.h.p./hr.

Автор указал на интересную разработку в двигателе «Юнкерса», а именно: уменьшение общего отношения длины хода до 5:1 в двигателе Jumo 206 (последний тип), 6:1 в Jumo 205 и 7:1 в Jumo 204. Снижение коэффициента избыточного воздуха, как утверждается, сократилось с 1,6 до 1,3; b.m.e.p. при его увеличении до 135 фунтов/кв.дюйм. Поскольку сам дизельный двигатель является тяжелым типом, из-за наличия в конструкции двух коленчатых валов и картеров, достигнутый прогресс заслуживает особого внимания.

«Исследование дизельных авиаконструкций на сегодняшний день, по-видимому, указывает, — сказал г-н Берн, — что главная неадекватность была в точном впрыске топлива и, возможно, в отсутствии движения или турбулентности, контролируемого воздушным движением, — чтобы дать регулируемое и полное сгорание с высокой скоростью, низким максимальным давлением и хорошим потреблением топлива. Почти неограниченное количество воздуха обеспечит только высокое среднее давление при низком расходе топлива».

Морское развитие


«Любопытно, — отмечает автор, — что в то время как в течение нескольких лет четырехтактный морской дизельный двигатель почти полностью заменен одиночными двухтактными или двигателями двойного действия по причинам снижения веса, стоимости и потребления топлива, авиадвигатель неуклонно продвигался на своем неэкономичном четырехтактном бензиновом курсе, с постепенным улучшением до минимально возможного потребление 0,44 фунта/баррель на л.с./час. В течение 15 лет размеры цилиндров коммерческих авиадвигателей увеличились не менее чем в три раза, что почти идентично показателю некоторых известных крупных маломощных судовых дизельных двигателей. Но в то время как в первом случае улучшение связано с увеличением b.m.e.p. и r.p.m. (среднее давление и обороты), в случае с морским двигателем, изменение, главным образом, связано с изменением его типа, среднее давление и обороты остаются почти одинаковыми из-за ограничений теплового напряжения и оборотов гребного винта соответственно.

«Очевидная потребность в подходящем двигателе на тяжелой нефти очень четко иллюстрируется цифрами на примере большого трансатлантического воздушного судна, приведенного в лекции г-на Гужа», — сказал г-н Бум. «С шестью двигателями мощностью 1300 л.с. и экономической крейсерской скоростью 237 миль в час и общим весом 163 000 фунтов составляет:


Двигатели23,320 lb. Оборудование8,700 lb.
Топл. баки2,670 lb. Топливо62,350 lb.
Конструкция54,110 lb. Комм. загрузка и экипаж11,850 lb.

«Рассматривая эти цифры, — продолжил автор, — только взглянув на вес топлива, очевидно, что первостепенное значение имеет улучшение расхода топлива. Вес двигателя, по-видимому, при этом будет почти вторичным. Еще одна поразительная особенность — большая мощность, необходимая для создания такой небольшой полезной нагрузки. Что касается веса двигателя, то существует тенденция требовать гораздо большей надежности и снижения объема технического обслуживание, а также вдвое увеличить удельные выходные данные. Таким образом, становится все труднее получить уменьшение веса. Все еще остаются значительные возможности для улучшения аэродинамической эффективности, но наибольший выигрыш можно получить при радикальном сокращении лобового сопротивления двигателя и улучшении потребления топлива за счет использования C.I. двухтактного цикла, оттока выхлопа и даже охлаждения силовой установки. Чистая передняя кромка крыла и использование интегральных топливных баков позволит перейти к более экономичной структуре крыла». Г-н Берн подытожил вышеупомянутые улучшения, которые могут быть достигнуты при улучшении в восьми направлениях, первым из которых является то, что двигатель полностью находится внутри крыла, чтобы устранить интерференцию и облегчить использование толкающих винтов.

прим. админ. — C.I. — compression-ignition — воспламенение от сжатия

Фиг. 1. Junkers Jumo оппозитный поршневой двухвальный двигатель на тяжелой нефти.

Г-н Берн всегда там, где волшебники авиационных двигателей по-прежнему, с величайшей осмотрительностью, не только обсуждают, какой должен быть правильный базовый тип двигателя, но приступают к разработке такого двигателя. Учитывая многие типы двигателей, находящихся в эксплуатации, изменения существующих конструкций указывает на широкие возможности и отображают новый курс, ориентированный на фундаментальные принципы, а не на практику.

«Предложение о том, что какая-то из форм плоского двигателя станет окончательным решением, становится все более и более очевидным …. Нынешняя тенденция увеличения количества цилиндров свидетельствует о том, что этот двигатель получит развитие.

«Обзор всей гаммы типов бензиновых двигателей показывает, что даже из соображений веса необходимо оставить систему бензинового двигателя и принять еще одну систему сжигания, которая не имеет ограничений по размеру цилиндров по причинам удельной производительности и экономии топлива. Таким образом, тренд типа будет состоять в воспламенении от сжатия, двухтактном цикле и наименьшем числе горизонтально расположенных оппозитных цилиндров … Любой линейный тип может быть адаптирован к «плоскому» типу оппозитных цилиндров, который предавался бы тщательному контролю впрыска топлива, как это было, например, в двигателе Coatalen».


Различные типы клапанов

На рисунке 2 показан тип тарельчатого клапана с одним выпускным клапаном, сочетающим хороший поток газа с изолированной камерой сгорания с двойной турбулентностью в крышке цилиндра и все же обладающий разумным газовым потоком для выхлопа. Короткий поршень и короткая длина цилиндра будут иметь малый вес. На этом рисунке также показан однопоршневой двухпоточный очиститель от отработанных газов, столь популярный в морских двигателях, что не следует исключать. Важно отметить, что подобная конструкция был запатентована Юнкерсом. Для сравнения приведена конструкция оппозитного поршня с дифференциальным ходом, показывающая очень простую конструкцию цилиндра.

Г-н Берн сказал: «Я предложу то, что, по моему мнению, является совершенно новым типом двигателя для авиационного мира, даже если он и имеет в качестве основы тип, хорошо известный в судоходной отрасли, а именно оппозитный поршневой двигатель. Это будет отступлением от моды в двигателестроении и стремлении дать конструктору самолета только то, что он хочет, — двигатель, который не будет мешать его стремлению к совершенным аэродинамическим формам».

Автор полагает, что самолет будущего будет с толкающим винтом, а из этого следует, что двигатель должен быть не только полностью расположен в крыле без гондол, но и с самым свободным ходом воздушного винта, т. е. должен находиться в задней части крыла, ближе к задней кромке, насколько это возможно. Следовательно, двигатели должны быть не только горизонтальной формы, но и как можно меньшей длины.

Аргумент, используемый для обоснования использования гондолы двигателя, заключается в том, что в случае высокопланового моноплана они обеспечивают место для убирающейся ходовой части, как у D.H. Flamingo, но, несомненно, будут найдены другие средства для этого. Одним из предложений, позволяющих эффективно расположить ходовой двигатель, является его размещение в небольшом разрезе с низкой частотой вращения, как показано на фиг. 4, когда некоторый полезный и контролируемый подъем достигается с относительно небольшим сопротивлением, в то же время устраняя все интерференционные помехи на главных крыльях.

Доступность двигателя


Самый толстый участок крыла должен быть зарезервирован в более крупном самолете в качестве прохода, чтобы получить доступ к двигателям. Поскольку с тянущим винтом на передней кромке крыла его передняя кромка составляет около 25% диаметра самого винта, установка двигателя по задней кромке крыла и использование толкающих винтов в конечном итоге позволяет использовать короткий вал и тем самым уменьшает вес силовой установки. После того, как будет решена проблема установки в крыле двигателей с толкающими винтами, в дальнейшем следует стимулировать разработку моноплана с высорасположенным крылом (высокоплана).

Основное преимущество дизельного двигателя заключается в том, что он не налагает никаких ограничений на размер цилиндра, и поскольку имеется достаточный диапазон крыльев, дизельный двигатель может иметь почти неограниченную длину в горизонтальной плоскости. «Я твердо придерживаюсь мнения, — сказал автор, — что, как только будет принято решение отказаться от нынешней концепции аэродинамического двигателя, являющегося либо компактным радиальным, либо рядным типом с минимальным миделем, и начать самое полное использование одного измерения, которое дает неограниченный объем, то есть горизонтальную длину, дизельный двигатель для самолетов быстро завоюет признание.

«Двигатель, который я собираюсь предложить для мощности в 2100 л.с., будет иметь только шесть оппозитных цилиндров, по три с каждой стороны коленчатого вала, но, конечно, будет всего двенадцать поршней, шесть управляют забором воздуха и шесть выхлопными газами. Диаметр предлагаемого цилиндра составляет 7 дюймов, а комбинированный ход 12 дюймов при вышеуказанной мощности, b.m.e.p. — 150 фунтов на кв. дюйм, а обороты r.p.m. — 2000».

Фиг. 3. Дизельный двигатель Bristol Phoenix установил мировой рекорд, достигнув высоты 27 450 футов (8 367 м).


Продувка цилиндров


В ходе подробного описания предлагаемой конструкции автор заявил: «Самой важной проблемой двухтактного цикла является полное удалениея выхлопных газов и их пополнение чистым воздухом. Движение воздуха в цилиндр должно быть выполнено с минимальными затратами, поэтому маршрут движения воздуха должен быть как можно прямее и короче. Эти и другие требования наилучшим образом достигаются за счет использования портов в отверстии цилиндров, всецело расположенных по всей его окружности. Предлагаемое горизонтальное расположение цилиндров дает наибольшее преимущество для двухтактного типа цилиндра, поскольку существует полная свобода использования двух высокопроизводительных выхлопных труб большой площади на цилиндр с превосходным газовым потоком. Поскольку полное объемное сгорание является фундаментальной необходимостью любого дизельного двигателя, оно должно быть организовано главным образом с точки зрения получения наилучшего распределения топлива и воздуха. Проблема заключается в том, чтобы получить идеальное пространство для сжигания и систему продувки цилиндров, не подвергая поршни или отверстия цилиндра воздействию чрезмерного нагрева. Это неизбежно требует применения конструкции с двумя поршнями.

«На Фиг. 5 и 6 показано горизонтально расположенное в линию устройство. Шести- или восьмицилиндровые двигатели «оппозитного типа» имеют определенные преимущества в балансировке (над двенадцатицилиндровым и девятицилиндровым радиальным).

Очевидно, что для такого двигателя потребуется совершенно другие технические решения: а именно, шатуны и подшипники, направляющие штока, втулки, поршневые гильзы цилиндров с масляным охлаждением, композитные поршни с масляным охлаждением, высокотемпературные камеры сгорания, коленчатый вал с тремя совершенно разными компонентами, специальное оборудование для впрыска топлива, воздушные насосы для выталкивания воздуха и измененная технология выхлопа. Замечателен сам факт разработки ремонтопригодного двигателя, чьи части могут легко обновлены и заменены по частям, вместо замены самого двигателя, что должно изменить саму концепцию проектирования.

Поршни дизельного двигателя имеют ряд конструктивных решений, требующих совершенно иной обработки по сравнению с применяемой в бензиновом двигателе. Например, короны поршня должны быть как можно более высокими, чтобы уменьшить потери тепла и поддерживать максимальную температуру воспламенения. Рассматриваемый поршень является составной конструкцией, корона и юбка из легированной стали представляют собой одно спрессованное целое, вокруг центральной части из легкого сплава, в которой располагаются внутренние подшипники. Колпачок из жаростойкой стали предохраняет от тепла, распространяющегося вниз по внешней стороне, на которой удерживаются поршневые кольца. Все три поршня удерживаются вместе одним центральным болтом из-за возможного дифференциального расширения. Это показано на рисунках 5 и 6, тогда как на Рис. 7 дается сравнение с конструкцией Юнкерса .

«Конструкция эффективного насоса продувки цилиндров является наиболее сложной особенностью любого двухтактного двигателя, поэтому для начала необходимо, чтобы давление выброса и требуемый избыточный объем были как можно ниже».

Г-н Берн указал, что есть некоторые сомнения в том, соответствуют ли требования к воздухозамещению и давлению центробежного нагнетателя (который обычно используется) с изменениями скорости. Преимущество центробежного нагнетателя заключается в том, что в течение нескольких лет он непрерывно развивается, в качестве нагнетателя может создавать давление до 15 или 20 фунтов/кв. дюйм. Однако следует иметь в виду, что потребление топлива и мощность Junkers Jumo до недавнего времени серьезно ухудшались из-за неэффективного центробежного нагнетателя, а в настоящее время получили развитие как радиальные, так и осевые вентиляторы потока, давая определенный стимул для разработки простейшего центробежного насоса взамен поршневого. Даже самый эффективный тип нагнетателя Rolls-Royce, эффективность которого как считается, составляет 73 процента, не так хорош, что легко можно получить с помощью простых деталей из насоса объемного типа, который имеет эффективность от 85 до 90 процентов. Шум и полная зависимость от двигателя — другие недостатки такого насоса. Поворотные нагнетатели постоянного давления типа Rootes, даже после многих лет разработки, потребляют чрезмерную цифру в 15 процентов от общей мощности, вырабатываемой двигателем. Нормальная цифра для большого морского дизельного двигателя не превышает 4-5%, используя обычные поршневые нагнетатели с автоматическими или механическими клапанами. Предлагаемая конструкция насоса обеспечит: -

(1) Нагнетатель максимальной эффективности, с помощью заслонки обеспечивающий, насколько это возможно, равномерное движение воздуха и в то же время, полностью используя кинетическую энергию самого столба воздуха.

(2) Простейшая из возможных система движущихся частей. Сам клапан или тип поршня выбираются так, чтобы использовать самые маленькие и легкие рабочие шатуны с минимальными трением или смазочными поверхностями.

(3) Приоритет подачи воздуха.

Расположение двигателя в крыле показано на рисунке 8. Г-н Берн суммирует ожидаемые преимущества предлагаемого двигателя по сравнению с принятыми бензиновыми двигателями следующим образом:

1. Достигнутая экономия топлива на испытательном стенде не менее 25 процентов, и еще большая экономия в обслуживании.

2. Геометрическая форма двигателя, подходящая для эффективных аэродинамических конструкций.

3. При значительно уменьшенных оборотах и средних давлениях получение небольшого веса двигателя, без больших максимальных давлений, в конечном счете, получение намного большей надежности, как следствие меньшие эксплуатационные расходы и более продолжительные срока службы.

4. Гораздо более высокая степень тяги от выхлопных газов, чем у любого существующего типа двигателя.

5. Снижение потерь на охлаждение и как следствие более эффективная работа масляного радиатора.

6. Динамически полностью сбалансированный двигатель.

7. Почти незагруженные основные подшипники.

8. Все шатунные подшипники однонаправленно загружены, чтобы обеспечивает бесшумную работу и отсутствие вибраций, даже в случае износа подшипника.

9. Отличная доступность, не имеющая аналогов в современных авиационных двигателях.

10. Уменьшенный вес конструкции крыла и топливного бака.

Дискуссия


Дискуссия была открыта мистером K. O. KELLER. Он не мог не почувствовать, что технические знания автора превзошли практические трудности. Должно быть понятно, что низкое потребление топлива легче получить в низкооборотном, чем в высокоскоростном двигателе, и по этой причине ему пришлось уменьшить мощность двигателя, чтобы достичь потребления 0,32 фунта на единицу мощности в л.с. В двигателе, предлагаемом автором, очищающий воздух всего на 10 процентов превышает объем камеры сгорания. Он рискует утверждать, что в этом случае всего на несколько процентов увеличится потребление топлива. Автор утверждает, что обеспечит максимальную эффективность сгорания при низком давлении сжатия. Практический опыт показывает, что дело обстоит с точностью до наоборот.

DR. T. W. F. BROWN не согласился с тезисами автора о том, что дизельный двигатель для самолетов может быть разработан по аналогии с крупными морскими дизелями. 10-процентный наддув для b.m.e.p. в 150 фунтов на кв. дюйм является слишком низким. Необходим очень тщательный эксперимент для обеспечения того, чтобы форма пространства сжатия позволила получить разумные запаздывания воспламенения, в противном случае нет никакой надежды на получение топлива, которое было бы лучше, чем в настоящее время является бензин для бензинового двигателя. Автор заявил, что чем меньше количество цилиндров на единицу объема цилиндра, тем меньше вес. Это, по логическому завершению, означало бы двигатель в один цилиндр, что является абсурдным.

MR. JOHN NEILL отметил, что дизельный авиационный двигатель Junkers Jumo на то время был самым передовым в своей стране. Следует отметить, что первый немецкий бомбардировщик, сбитый вблизи Эдинбурга, был оснащен бензиновыми двигателями Junkers Jumo.

MR. A. ORTON был уверен, что автор находится на правильном пути и обратил внимание на двухтактную систему каденации. Двигатели этого типа с b.m.e.p. в 142 фунтов на кв. дюйм и оборотами 1500 r.p.m. постоянно работали без использования воздушного наддува. С воздухом при умеренном наддуве было получено значение в 200 фунтов на квадратный дюйм. Он сомневался в предлагаемом увеличении размера цилиндра и уменьшении r.p.m. По сравнению с существующей практикой авиадвигателей он считал, что это приведет к уменьшению значений b.h.p. на литр и b.h.p. на единицу веса.

MR. S. CAMM полностью поддержал дело, в котором была высказана необходимость в интенсивной программе исследований и разработок для успешной разработки дизельного, двухтактного двигателя. Он согласился с размером предлагаемого двигателя, считал предлагаемую форму превосходной, хотя было бы отлично, если бы его можно было сделать еще более меньшим. Он полностью поддерживал внешнее охлаждение двигателя и считал, что это будет совершенно необходимо. Однако он считал, что предлагаемый масляный радиатор неадекватен, и предположил, что воздушная система охлаждения, используемая на нынешних самолетах, вероятно, будет лучше всего.

MR. A. GOUGE также полагал, что автор выдвинул очень хорошие идеи для дизельного двигателя и что исследования по этому вопросу должны быть активно продолжены. Потребление современного бензинового двигателя находилось в районе 0,42 lb./b.h.p./hr., в то время как для современного дизельного двигатель этот расход составлял около 0,38 lb./b.h.p./hr. При увеличении веса последнего коэффициент усиления оказался небольшим.

При высоких нагрузках на крыло взлет является чрезвычайно важным. Увидел ли автор возможность увеличения взлетной мощности у дизельного двигателя, как это было возможно с бензиновым двигателем?

Он думал, что предложение по установке двигателя полностью в крыло окажется чрезвычайно сложным. У толкающих винтов был свой недостаток, возможно, самым серьезным из которых был Joss**, в случае четырехмоторных самолетов, забирающих примерно 15-30 процентов, от подъемной силы при взлете.

DR. F. W. LANCHESTER полностью не соглашался с доводами автора о том, что чем меньше цилиндров (в определенных пределах) на единицу общего объема цилиндра, тем меньше вес двигателя на единицу мощности (л.с.). Но д-р Ланчестер действительно полагал, что дизель выиграет часть своего поля, во всяком случае, в конечном счете, и что переход на двухтактный цикл был неизбежен.

Выводы из полной и оживленной дискуссии заключались в том, что в целом было достигнуто общее согласие в отношении того, что двухтактный дизель заслуживает более интенсивных исследований, но автор недооценил механические и другие трудности, которые необходимо преодолеть, прежде чем успешный результат может быть получен.

Поскольку автор строит двигатель, который он защищает, следует надеяться, что лекарство, которое ему придется принимать в пути, не будет столь неприятным, как многие из выступавших в дискуссии, предположили, что это будет так.

HANDELS SCHIFF HUNTERS: Торпедоносцы Бристоль Бофорты наносят самые тяжелые удары по немецких торговым судам.

Дата размещения на сайте 12 августа 2017 г.


прим админ * — Название двигателя произошло от тонкостенных гильз, которые скользят вверх-вниз во время работы. В гильзах на разной высоте сделаны отверстия, которые в определённые моменты времени совмещаются и позволяют выходить отработавшим газам или поступать воздуху.

Такой двигатель позволяет достигнуть большего сжатия и соответственно большей мощности.

** — вероятно речь идет о реактивном моменте воздушного винта и закручивании струи ВВ…

2014 08 13

Общеизвестно, что с наши дизелями в авиации так и не смогли решить проблемы надежности:

Авиационные дизели для Ер-2

В общем по авиационным дизелям все логично обозначено у Александра Ильина в своей статье:

Эволюция четырёхтактных двигателей внутреннего сгорания

Некоторые вопросы форума про ДВС: О двигателях внутреннего сгорания / Михаил Соколон

Все про моторы на сайте здесь: Двигатели внутреннего сгорания

Представляет интерес ветка форума: Самолет и двигатель -> Двигатели

2014 08 15

Перевод статьи вероятно не удовлетворит специалистов. В этом случае рекомендуется перейти вверху по сслыке «Eng» и посмотреть исходник.

Во всяком случае, обоснования применения оппозитного двухтактного дизельного двигателя с толкающим винтом, расположенного в крыле по его заднему лонжерону заслуживает внимания и рекомендуется для просмотра.

Вячеслав


Поршневой двигатель самолета.

 

История поршневых двигателей насчитывает на несколько десятилетий больше, чем история самой авиации. Они сдвинули с места первый автомобиль, подняли в небо первый самолет и первый вертолет, прошли две Мировые войны и до сих пор используются в 99.9% автомобилей мира. Однако в авиации на сегодняшний день поршневые двигатели практически полностью вытеснены газотурбинными двигателями и используются исключительно в малоразмерных персональных либо спортивных самолетах.

Это произошло по причине того, что даже самый простой и неэффективный газотурбинный двигатель имеет большую удельную мощность (единица мощности на единицу массы двигателя), чем самый современный поршневой, а в авиации масса – исключительно важный параметр. Кроме того, газотурбинный двигатель более универсальный и может двигать самолет за счет реактивной струи, исключительно этот факт позволил самолетам достичь скоростей в 2, 3 или даже 4 раза выше скорости звука.

Но вернемся к поршневым двигателям. Как же они устроены? На схеме продемонстрировано устройство цилиндра четырехтактного бензинового двигателя воздушного охлаждения: 1 – впускной патрубок (подача топливно-воздушной смеси в цилиндр), 2 – стенка цилиндра (в данном случае ребристая с внешней стороны, для повышения охлаждаемой площади, поскольку цилиндр имеет воздушное охлаждение), 3 – поршень (возвратно-поступательным движением обеспечивает впуск смеси, ее сжатие, получение энергии и дальнейший вывод отработанных газов), 4, 5 – шатун и коленвал (преобразование возвратно-поступательного импульса в крутящий момент), 6 – свеча зажигания (дает искру, которая поджигает смесь), 7 – выхлопной патрубок (вывод отработанных газов), 8 – впускной и выпускной клапаны («открывают» цилиндр для входа смеси (впускной) и выхода отработанных газов (выпускной), герметизируют цилиндр во время сжатия и воспламенения. Следует отметить, что изображен лишь пример конструкции, но ее вариации могут быть значительными, к примеру цилиндры дизельных двигателей не имеют свечей зажигания, а если двигатель жидкостного охлаждения – отсутствуют «ребра», но присутствуют каналы для прогона охлаждающей жидкости и т.д. По количеству тактов (действия, происходящие поочередно в цилиндре двигателя) различают 3 типа двигателя – двухтактный, четырехтактный и шеститактный. Наиболее широко используемым является четырехтактный двигатель, четыре его такта показаны на схеме.

Коэффициент полезного действия самых современных поршневых двигателей не превышает 25-30%, т.е. реально около 70% всей энергии, получаемой во время сгорания топлива, превращается в тепло, которое необходимо выводить из двигателя. Система охлаждения очень важный компонент в силовой установке и во многом определяет ее характеристики. По типу вывода тепла (иначе охлаждения) двигатели подразделяются на воздушный и жидкостный тип.

И если в автомобилях воздушное охлаждение практически не используется, из-за своей низкой эффективности на малых скоростях и ее полного отсутствия при остановке, то в поршневой авиации двигатели воздушного охлаждения очень и очень широко используются, ведь имеют ряд преимуществ перед двигателями жидкостного охлаждения. А именно меньшая масса, соответственно большая удельная мощность и более простая, а значит и более надежная конструкция. Кроме того, из-за большой силы набегающего потока во время полета, эффективность охлаждения обычно достаточна для нормальной работы двигателя.

 

Большинство поршневых двигателей – многоцилиндровые, это необходимо для повышения мощности и общей их эффективности. В связи с этим их классифицируют по расположению цилиндров относительно коленвала. В пик своего развития, авиационные двигатели имели до 24 цилиндров, а некоторые, несерийные экземпляры и более. И основными, наиболее широко используемыми вариантами расположения цилиндров является V-образное, рядное и звездообразное.

Различить их нетрудно, ведь если смотреть спереди они и выглядят как буква V в первом случае, один ряд (колонна) – во втором случае, и звезда (или при наличии большого количества цилиндров — скорее блюдечко) в третьем. Традиционно два первых типа используют систему жидкостного охлаждения,  в то время как последний – воздушного. Соответственно кроме вышеназванных преимуществ и недостатков двигателей по типу их охлаждения, можно еще добавить, что рядные двигатели компактные, могут быть установлены в перевернутом положении, но при наличии большого количества цилиндров, они получаются очень уж длинными.

V-образные имеют 2 цилиндра в ряду, соответственно они имеют в два раза меньшую длину, чем рядные, но зато менее компактны, хотя также могут быть установлены в перевернутом положении, имеют большее фронтальное сечение, а значит и большее лобовое сопротивление. Звездообразные, или радиальные двигатели, имеют цилиндры, распложенные вокруг коленвала, соответственно они наиболее громоздкие, имеют просто таки огромное фронтальное сечение и лобовое сопротивление, но благодаря этому могут эффективно охлаждаться набегающим потоком и имеют очень незначительные показатели длины.

Другие агрегаты

Авиационный двухтактный. Rolls-Royce Crecy — А где-то идут космические войны — LiveJournal

 

Rolls-Royce Crecy — необычный авиадвигатель даже для британского авиапрома, выделяющегося большим разнообразием подходов в деле конструирования моторов для самолетов. Потому что Crecy — единственный двухтактный авиадвигатель большой мощности. На легком топливе разумеется, двухтактных авиационных дизелей было достаточно.

Для применения в авиации основное достоинство двухтактного двигателя большая на 60-70%% мощность при тех же габаритах, основные недостатки — больший расход топлива, масла и воздуха. Остальные минусы в разной степени компенсируются вводом различных технических решений, которые впрочем уменьшают плюсы двухтактника — простоту устройства и в меньшей мере компактность, или не существенны для авиамотора, особенно в военное время — это про меньший ресурс.

История двухтактника от R-R началась в декабре 1935 году когда в Министерстве Авиации Великобритании начали обсуждать создание нового мощного двигателя, предназначенного для скоростного истребителя-перехватчика. Участвующий в обсуждении знаменитый ученый-двигателист Harry Ricardo предложил двухтактный мотор, заказчик на предложение согласился. Вторая половина 30х годов была посвящена изучению свойств такого мотора, первый прототип Crecy был изготовлен в железе в 1941. К этому времени определили на какой самолет «Креси» будет ставится — на Spitfire. На испытаниях мотор показал 1400л.с. плюс большую дополнительную тягу создавал выхлоп, 30% от тяги пропеллера! Однако были проблемы с вибрацией и охлаждением поршней и втулок.
Первый экземпляр «Креси» проработал более 450 часов и испытывался до 45 года, в 43 его переделали в Crecy MK II с отдельными блоками цилиндров, а не выполненными единой деталью как раньше. Следующие экземпляры мотора успешно проходили и 25 и 50 часовые тесты на непрерывную работу.

В течение войны приоритет работ над «Креси» был низким, всего было изготовлено и испытано шесть моторов плюс восемь отдельных двухцилиндровых V-образных секций. Три последних мотора в 1944-1945 годах получили турбину. А в декабре 1945 работы над двигателем прекратили из-за отказа от дальнейших работ над поршневыми моторами в связи с переходом на реактивную тягу.

1.

Crecy представлял собой V-образный двухтактовый двигатель с развалом цилиндров в 90 градусов, с жидкостным охлаждением, с непосредственным вспрыском топлива и гильзовым распределением. Обе этих технологии усложняли устройство мотора, зато давали наибольший выигрыш для двухтактника — топливо-воздушная смесь сжигалась эффективно, воздухообмен в цилиндре проходил наиболее оптимальным образом. Мощный выхлоп, большой расход воздуха и топлива обусловили появление на «Креси» турбины, вращаемой выхлопными газами, аналогичной применяемой на первом английском ТРД Whittle W.1, но в половинном масштабе. Причем вал турбины был общим с коленчатым валом мотора, так что эта система являлась турбокомпаундом, а не классическим турбокомпрессором. Естественно на моторе стоял и одноступенчатый нагнетатель, с изменяемым углом установки лопастей вентилятора. Система маслоснабжения была аналогичной стоявшей на четырехтактниках, лить масло в бензин как это делается на легких двухтактных моторах, не было нужно.

ТТХ (расчетные)

Диаметр цилиндра, мм 129,5
Ход поршня, мм 165,1
Объем, л 26
Вес сухого, кг 862
Топливо, октановое число 100
Редукция 0,451:1
Выходная мощность, л.с. 2729
Степень наддува 7:1
Расход топлива, л/ч 388,2 при 2500 об/мин

Как видно из ТТХ двигатель работал на относительно невысоких для «обычных» авиамоторов оборотах — 2500 об/мин. Согласно Рикардо при повышении оборотов 2хтактника затраты мощности на очистку и заполнение цилиндра будут здорово увеличиваться, что очень снизит его эффективность относительно 4хтактника.
На испытаниях 21 декабря 1944 предпоследний Crecy (s/n 10) выдал 1798 л.с. без подключения турбины. Ожидалось что с ней он мог выдать 2500л.с.. Перспективы двигателя при дальнейшем совершенствовании оценивались очень высоко. Хотя есть и другое мнение: в ходе испытаний «Креси» выявились серьезные проблемы с охлаждением цилиндров. Вызвано это было видимо выбранным способом подачи воздуха в цилиндры — с продувочными окнами, и повышенным расходом масла, характерным для двухтактных двигателей. Несмотря на всякие технические ухищрения на момент окончания работ решить задачу полностью не удалось.

2.

Предполагалось что Crecy в воздухе будет тестироваться на Hawker Henley, в марте 43 был даже выделен s/n L3385. Но до установки мотора на самолет дело так и не дошло. Перед этим, летом 41го, макет «Креси» примерили на Supermarine Spitfire Mk II, а в марте 1942 вышел официальный доклад, в котором сравнивали перспективы Спитфайра с Griffon’ом и Crecy. Было признано что планер «Спита» не выдержит мощности двухтактника, а вот дефорсированная версия «Креси» даст истребителю большее преимущество по сравнению с «Гриффоном». Для справки — серийный Griffon 65 выдавал 2220л.с. при весе 900кг.

У R-R Crecy можно сказать был парный двигатель на тяжелом топливе — авиадизель Napier Nomad. Тоже двухтактный, тоже 12 цилиндровый рядный, тоже с турбокомпаундом и жидкостного охлаждения. Но оппозитный, выдавал 3150л.с. при весе в 1620кг. Был создан в 1949, проект мотора умер в начале 50х, и к нему кстати тоже приложил руку Рикардо. «Номад» считается одним из наиболее совершенных поршневых авиамоторов, возможно шанс стать таковым был и у Crecy.

3.

4.

5.

6. Фронтальная площадь двигателя — 0,6м2, но вместе со всей «обвязкой» она получается совсем немалой — 1,33м2.

7.

8.

Источники:
Г.Р.Рикардо. Быстроходные двигатели внутреннего сгорания
en.wikipedia.org
www.warbirdsforum.com
www.ww2aircraft.net
www.enginehistory.org
http://wktodd.webspace.virginmedia.com/animations/animsic.html

Tags: Авиадвигатель, Великобритания

Гильзовое газораспределение – прошлое или будущее? — Энергетика и промышленность России — № 5 (69) май 2006 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 5 (69) май 2006 года

Немного истории

Первая двойная возвратно-поступательная гильза была разработана компанией «Даймлер», а изобретена она была Чарльзом Найтом. За ней последовало множество других аналогичных конструкций. Из их довольно многочисленного семейства самой надежной оказалась конструкция, запатентованная Бертом и Мак-Колумом.

В двигателе Найта использовались две концентричные возвратно-поступательные движущиеся гильзы. Они приводились в действие от промежуточного вала, вращающегося со скоростью вдвое меньшей, чем коленчатый вал. Этот механизм очень хорошо работал в двигателях с относительно небольшой мощностью и широко использовался в дорогих комфортабельных автомобилях. Но при попытках получить высокую литровую мощность двигатели с двойной гильзой из‑за масляного голодания развитых поверхностей трения становились причиной выхода агрегата из строя, – поэтому от них довольно быстро отказались.

В конструкции Берт-Мак-Колум, использовавшейся на первых автомобилях фирмы «Агрилл», применялась одна гильза с комбинированным вращательным и возвратно-поступательным движением. Такое движение полностью решало проблему смазки, так как было невозможно найти более идеального движения для распространения и механического распределения смазки между двумя трущимися поверхностями. Автомобили с подобными двигателями имели значительный коммерческий успех.

В начале 1914 года фирма «Агрилл» представила на конкурс двигателей для военной авиации шестицилиндровый двигатель с гильзовым газораспределением. Двигатель показал хорошие результаты, но перед окончанием испытаний у него сломался коленвал,  что было скорее просто невезением, но из‑за этого первые моторы с гильзовым газораспределением так и не были использованы.

Однако выдающийся исследователь Г. Р. Риккардо в течение тридцати последующих лет проводил исследовательские работы по гильзовому газораспределению. Результаты этих исследовательских работ трудно переоценить. В дизельной версии двигателя удавалось довести расход топлива до 154 г/л. с. в час – исключительные показатели даже в наше время.

Двигатели Рикардо

Первоначально, для проведения испытаний в 1921‑22 г.г. в авиационном центре фирмы «Ройал» были спроектированы и построены для сравнительных испытаний два двигателя: четырехклапанный и одноцилиндровый одногильзовый четырехтактный диаметром 140 мм и ходом поршня 178 мм. При толщине гильзы 3,18 мм он развивал 1300 об/мин. Чугунная гильза приводилась в движение посредством консольного кривошипного пальца на валу, вращающегося в два раза медленнее коленчатого вала. Двигатель был снабжен тремя впускными и двумя выпускными окнами.

Полная проходная площадь как впускных, так и выпускных окон равнялась по площади четырехклапанной конструкции головки с тарельчатыми клапанами.

При проведении сравнительных испытаний бензиновых двигателей выяснилось, что:

1. При использовании одного моторного топлива двигатель с тарельчатыми клапанами на режиме максимальной мощности работал на границе детонации. В то время как двигатель с гильзовым газораспределением не имел следов детонации даже при опережении зажигания, увеличенном до значения, вызывающего падение крутящего момента.

2. В двигателе с тарельчатыми клапанами оптимальное опережение зажигания составляло 31°, а скорость нарастания давления – около 1,76 кг / см. На двигателе же с гильзовым газораспределением оптимальное опережение зажигания равно только 14°, а скорость нарастания давления 3,16 кг / см. Из чего следует, что у первого степень турбулизации была ниже, а у последнего – даже выше оптимальной.

3. Температура поршней при равновеликой мощности была значительно ниже у двигателя с гильзовым газораспределением.

4. Механический КПД двигателя с гильзовым газораспределением был заметно выше, чем у двигателя с тарельчатыми клапанами.

5. Двигатель с гильзовым газораспределением работал более устойчиво, чем двигатель с клапанами.

6. Механический шум при гильзовом распределении был заметно меньше, тогда как шум от сгорания был явно больше – что явилось следствием большой скорости нарастания давления.

7. Предусмотренная смазка гильзы оказалась ненужной, так как брызг от масляной системы кривошипных головок шатунов оказалось достаточно. При этом было установлено, что гильза равномерно смазана по всей площади окружности – как изнутри, так и снаружи гильзы, даже при резкой остановке двигателя на полной нагрузке.

Дополнительно выяснилось также, что в двигателе с гильзовым газораспределением можно поднять степень сжатия, используя то же топливо, что и для двигателя с тарельчатыми клапанами.

В момент наполнения воздухом цилиндра двигателя впускные окна открываются посредством углового движения гильзы, а закрываются – при ее движении вверх. В начальный период поток направляется кромкой окна цилиндра только с одной стороны, и поэтому воздух поступает наклонно, заставляя заряд вращаться в направлении, противоположном вращению гильзы.

Этот тангенциальный вход устанавливает интенсивный вращающийся вихрь. Когда открытие увеличивается, эффект уменьшается, пока в конце периода он вообще не исчезает, и направление входа тогда определяется контуром канала, ведущего к окну.

Было установлено, что путем установки очень маленьких направляющих во впускном трубопроводе можно обеспечить полное управление воздушным вихрем.

Для этого изготовили специальный анемометр, который устанавливался внутри камеры сгорания для записи средней скорости вращения воздуха при проворачивании вала. Отношение между скоростью анемометра и скоростью вращения коленчатого вала выражалось вихревым соотношением, т. е. если анемометр делает четыре оборота за один оборот коленвала, то вихревое соотношение равно 4. Было найдено, что оптимальное вихревое соотношение несколько отличается от первоначального и находится в пределах 1– 2. Одно это позволило:
1. Увеличить среднее эффективное давление с 9,55 до 10,3 кг/см2.
2. Уменьшить расход топлива с 209 до 206 г/л. с/час.
3. Увеличить угол опережения зажигания с 16° до 21°.
4. Уменьшить общий поток теплоты в охлаждающую жидкость с 70% до 64% от теплоты, эффективной эквивалентной мощности.

И бензиновая, и дизельные установки в дальнейшем показали очень высокие результаты. На бензиновой установке с октановым числом около 60 было достигнуто среднее эффективное давление 10,3 кг/см2 с минимальным расходом топлива 202 г/л. с/ч (274г/кВт-ч). А на двигателе с воспламенением от сжатия – давление 8,5 кг/см2 на границе дымления с минимальным расходом топлива 161 г/л. с/ч (219 г/кВт-ч). Позднее на таком же, только многоцилиндровом двигателе был достигнут минимальный расход топлива всего 154 г/л. с/ч (209 г/кВт-ч) – это очень хорошие показатели и для современных дизельных двигателей.

Двухтактные двигатели

В первую очередь гильзовое газораспределение предназначено для дизельных двигателей, в которых двухтактный цикл вполне оправдан экономически. Конечно, и бензиновые версии имеют право на существование,  но только те из них, где топливо, так же как и в дизелях, подается прямо в цилиндр. Однако эти системы имеют массу ограничений. Их применение сравнимо, по затратам на горюче-смазочные материалы, к бензиновым четырехтактным моторам.

Во время работ по созданию двухтактных двигателей с гильзовым газораспределением было решено использовать весь накопленный материал, полученный при исследовании четырехтактных двигателей. В двухтактном варианте движение гильзы соответствует скорости вращения коленчатого вала, и гильза может, в результате этого, приводиться прямо от эксцентрика, расположенного на коленчатом валу. Кроме того, в двухтактном варианте для управления окнами требуется только возвратно-поступательное движение гильзы, хотя для осуществления лучшей смазки необходимо небольшое ее вращение. Это вращение обеспечивалось введением качающегося рычага с точкой опоры между эксцентриком и шаровым шарниром.

Воздух в двигатель впускался через круговой пояс окон, расположенных внизу гильзы, окна открывались поршнем. Выпуск производился через другой пояс окон около верхнего конца гильзы. В результате обеспечивалась прямоточная продувка, причем выпуск управлялся одной гильзой, а впуск – поршнем.

С первого, опытного, пуска установка показала хорошие показатели: был получен минимальный расход топлива 168 г/л. с. ч (229 г/кВт-ч). При этом на такой же четырехтактной установке, с равными условиями работы расход составлял 161 г/л. с/ч (219 кВт-ч).

Как и следовало ожидать, очень скоро появились и первые неисправности:

1. Очень быстро закоксовывались кольца головки цилиндра.

2. Температура поршня была очень высокой, что приводило к залеганию и потере упругости поршневых колец.

3. Масло по наружной поверхности гильзы не могло проходить через промежуток в стенке цилиндра, образованный впускным поясом.

4. Очень быстро изнашивались подшипники поршневого пальца – как в поршне, так и в шатуне.

Первая из неисправностей была устранена установкой шарового соединения со сферическим концом шатуна вместо обычного поршневого пальца и охлаждением поршня потоком масла, подаваемого вверх и вниз по шатуну и циркулирующего с высокой скоростью непосредственно под днищем поршня.

Неисправности со смазкой наружной поверхности гильзы были устранены установкой лубрикатора местной смазки, питающего маслом кольцевую канавку в корпусе цилиндра выше впускного пояса окон, с очень незначительным количеством подаваемого масла.

Главной проблемой, однако, была проблема с кольцами головки, так как они закоксовывались уже после нескольких часов работы на полной нагрузке. В двухтактном двигателе с гильзовым газораспределением кольца головки цилиндра находятся в таких же тяжелых условиях работы, как и поршневые кольца двухтактного двигателя – с регулированием открытия выпускных окон поршнем.

То есть они подвергаются сильному эрозийному воздействию горячих выпускных газов с высоким давлением через края поршня или на его днище, а также воздействию скопления частично закоксовавшегося масла, соскобленного с кромок выпускных окон.

Кольца головки находятся в худших условиях еще и потому, что они не имеют активного движения качения, как в поршне. Все манипуляции с улучшением теплоотвода этой части головки ничего не дали.

В итоге было решено перейти на вариант гильзы без верхнего ряда окон – как бы полагая, что уплотнение от прорыва газов будет обеспечено самой гильзой.

Конструкция оказалась на редкость удачной и позволила провести испытания на прочность при полной нагрузке.

Предано забвению

С 1935 по 1945 г. в Англии двигателей с гильзовым газораспределением только для нужд авиации было выпущено суммарной мощностью свыше 200 млн л. с.

Однако в скором времени об этих двигателях… забыли. Причина забвения комплексная и скрывается отнюдь не в конструкции агрегатов (их показатели превосходили существующие четырехклапанные двигатели, а у некоторых даже превосходят и до сих пор).

Рикардо не повезло так же, как не повезло в Германии Х. Юнкерсу с его двухтактными двигателями и В. Баландину с его бесшатунными двигателями в России.

Причина – отказ авиации от поршневых машин.

В книге «Конструкция и расчет поршневых и комбинированных двигателей», изданной под редакцией проф. А. Орлина в 1972 году, отмечено, что «… золотниковое одногильзовое газораспределение имеет следующие преимущества по сравнению с клапанным:

1. Возможность осуществления большего время/сечения при тех же факторах газораспределения.

2. Меньший нагрев заряда и минимальные гидравлические потери.

3. Принудительное движение золотников, не требующих регулировки, вследствие постоянной кинематической связи золотников с коленчатым валом, – при этом уменьшаются динамические нагрузки на звенья газораспределительного механизма, что обуславливает возможность повышения скорости вращения вала.

4. Бесшумность работы.

5. Возможность применения повышенной степени сжатия в карбюраторных двигателях без опасения появления детонации, так как нет раскаленных выпускных клапанов.

К основным недостаткам названного газораспределения относят сложность привода конструкции…»

Однако «хоронить» гильзовое газораспределение пока рано.

Шторковое газораспределение – и гильза, и клапан

Шторковый механизм газораспределения – новшество, способное соединить воедино достоинства и гильзового, и клапанного механизмов.

Конструктивно это будет выглядеть следующим образом: стальная тонкостенная гильза по периметру в 360° набирается из отдельных секторов – шторок. При обычном газораспределении достаточно и двух секторов, по 180° каждый. Один управляет впуском, а второй – выпуском.

На внутренней поверхности цилиндра шторки в статическом состоянии удерживаются упором друг в друга (минимальный тепловой зазор остается). Разжимание шторок к стенкам цилиндра происходит с помощью поршневых колец и самого поршня. При работающем моторе сюда еще добавятся газовые силы.

Каждая шторка может управляться отдельно с помощью:

1. Принудительного десмодромного привода с остановкой шторки в крайних положениях.

2. Кулачкового привода с остановкой шторки в крайних положениях.

3. Принудительного привода с непрерывным возвратно-поступательным движением шторки. Первые два приводных механизма содержат кулачковые распредвалы, а последний – эксцентриковый вал.

Привод шторок может производиться с любой стороны основания цилиндра, в том числе – и со стороны головки.

Тепловой зазор шторкового механизма может находиться в пределах обычных допусков цилиндропоршневой группы.

Расчеты показывают, что при такой конструкции газораспределения площадь проходного сечения впускных каналов для четырехтактного двигателя может достигать 33‑38% (выпускных – 25‑27 %) от площади поршня. Такая величина проходного сечения недостижима ни в одном приводе газораспределения четырехтактных моторов, она снимает лимитирование по проходному сечению газов через органы газораспределения до средней скорости поршня 21‑24 м/сек вместо 10‑12 м/сек, и это при предельной скорости воздуха на впуске 64 м/сек (максимальная допустимая скорость находится в районе 120 м/сек).
Шторка, изготовленная из хромо-никелевой стали при толщине всего в 1,2 мм под диаметр поршня 92 мм будет весить 150‑170 граммов.

Какие преимущества дает использование новой конструкции?

1. Тонкостенная шторка независимо от износа всегда будет прижиматься к цилиндру – облегая его с внутренней стороны. Ей не грозит потеря устойчивости и развитие микротрещин на кромках – из‑за отсутствия напряжений формы и, соответственно, термических напряжений.

2. Шторковый привод можно разместить в основании цилиндров, при этом головка цилиндров приобретает форму «плоской крышки».

3. При отсутствии верхнего ряда окон впускная и выпускная кромки шторок становятся линейными. Это позволит снизить высоту любых существующих тронковых двигателей (с приводом, расположенным в основании цилиндров) на 25‑30%, что уменьшит высоту двигателя в значительно большей степени, чем может дать даже бесшатунный силовой механизм.

4. Поломка шторки или ее привода не выведет двигатель из работоспособного состояния. Максимум неприятностей – отключится один рабочий цилиндр.

Шторковое газораспределение не только устраняет присущие двигателям с гильзовым газораспределением недостатки, но и будет удовлетворять современным экологическим показателям по дымности и содержанию паров масла в двигателе.

Изучаем странные двигатели, застрявшие на обочине прогресса — ДРАЙВ

Двигатели Ванкеля, Стирлинга, разного рода газотурбинные установки так и не стали автомобильным мейнстримом. Ряд известных компаний (от Мазды до GM, от Мерседеса до Volvo) работали над ними десятки лет, упорствовали маленькие фирмы и отдельные изобретатели. Увы, в конце концов выяснялось, что подводных камней в той или иной конструкции намного больше, чем казалось вначале. Но это не значит, что развитие альтернативных агрегатов невозможно. Энтузиасты перебирают идею за идеей, и мне как инженеру-двигателисту интересно поделиться с вами рядом экзотических схем.

Некоторые создатели перспективных двигателей решили, что комбинация из цилиндра, поршня, шатуна и коленвала отлично себя зарекомендовала более чем за столетие и, чтобы улучшить параметры ДВС, не надо изобретать её заново — достаточно лишь подправить кое-какие аспекты. Поэтому первый в нашем обзоре — мотор американской компании Scuderi Group, который имеет классические такты впуска, сжатия, рабочего хода и выпуска, но происходят они не в одном и том же цилиндре, а в разных. Так называемый холодный цилиндр отвечает за впуск и сжатие, а второй, горячий — за рабочий ход и выпуск.

В простейшем моторе Scuderi цилиндров два: поршень в холодном цилиндре отстаёт на 30 градусов поворота коленвала от собрата в горячем.

Пока в рабочем цилиндре идёт расширение газов, в холодном, компрессорном, — такт впуска. В рабочем — выпуск, в холодном — сжатие. В конце такта сжатия поршни приближаются к своим верхним мёртвым точкам, смесь через перепускной канал перебрасывается из холодного цилиндра в горячий и поджигается. Такой разделённый цикл (в принципе — тот же цикл Отто, пусть и модифицированный) американцы придумали в 2006 году, а в 2009-м построили опытный Scuderi Split Cycle Engine. У компрессорного и рабочего цилиндров могут быть разные диаметры и ходы поршней, что даёт гибко настраивать параметры — получается аналог цикла Миллера с дополнительным расширением газов.

Экспериментальный литровый мотор Scuderi на стенде работает плавно и относительно тихо — даже без глушителя!

По расчётам мотор Scuderi на 25% экономичнее обычного, а с турбонаддувом и теплообменником, передающим энергию выхлопных газов воздуху в перепускном канале, и того выше. В четырёхцилиндровом варианте один компрессорный цилиндр может загонять смесь в три рабочих.

Если к каналу между цилиндрами добавить ответвление с клапанами и баллоном высокого давления, можно заставить такой мотор собирать энергию при торможении и использовать её при разгоне (этот режим показан на последней минуте первого ролика). Однако на протяжении уже ряда лет деятельность компании Scuderi Group ограничивается лишь опытными образцами и участием в выставках. Похоже, реальная экономичность тут всё же не может перебить высокую сложность конструкции.

Двухтактный агрегат Paut Motor использует принцип, подобный применённому в моторах Scuderi Group, — сжатие и рабочий ход тут происходят в разных цилиндрах, между которыми устроены перепускные каналы.

К разделённому рабочему циклу обратились было и разработчики хорватской фирмы Paut Motor. Их «разнесённая» конструкция привлекла меньшим числом деталей, низким трением и сниженным шумом. А необходимость внешнего бака для системы смазки, вызванная тем, что в картере масла не предусмотрено, не испугала. Изобретатели построили несколько опытных образцов. Для рабочего объёма в семь литров их габариты (500×440×440 мм) и вес (135 кг) оказались чуть ли не вдвое ниже, чем у традиционных ДВС. А отдачу так и не выяснили. Последний прототип был собран в 2011 году, а затем проект заглох.

В агрегате Paut Motor — четыре рабочих камеры с поршнями диаметром 100 мм и четыре компрессионных (120 мм). Двухсторонние поршни передают усилия на коленвал, который, благодаря паре шестерён с внутренним зацеплением, совершает планетарное движение.

Двухтактный двигатель Bonner (по имени спонсора, фирмы Bonner Motor), изобретённый в 2006 году в США Вальтером Шмидом, устроен ещё сложнее. Как и в проекте Paut Motor, цилиндры тут расположены буквой X, а коленвал тоже совершает планетарное движение за счёт системы шестерён.

Ключевое отличие от схемы фирмы Paut Motor — роль рабочих поршней играют подвижные цилиндры, соединённые с коленвалом (показаны красным). А с внешней стороны их закрывают неподвижные поршни (отмечены серым).

За газораспределение в Боннере отвечают клапаны в донышках цилиндров и вращающиеся золотники в корпусе мотора. При этом внешние поршни могут немного смещаться под давлением масла, обеспечивая переменную степень сжатия. Запутанная схема! А всё — ради высокой мощности на единицу веса. В теории Bonner выглядит интересно, но на практике о нём уже давно нет никаких новостей — судя по всему, надежд он не оправдал.

Некий мистер Смоллбон получил американский патент на аксиальный мотор ещё в 1906 году. Но если бы такой агрегат был идеалом, через 110 лет все автомобили использовали бы его.

Другие изобретатели не меняли рабочие циклы ДВС, а сосредотачивались на расположении его частей. Таковы, например, аксиальные моторы, которым уже больше ста лет (один из ранних патентов — на рисунке выше). Все они отличаются деталями, но объединены общим принципом — цилиндры располагаются, как патроны в барабане револьвера, с соосным выходным валом. За преобразование возвратно-поступательных движений поршней во вращение вала отвечают разные системы вроде наклонённых к продольной оси двигателя штифтов, косых шайб и тому подобного.

По такому принципу сегодня работают некоторые компрессоры. Добавив продуманное газораспределение и зажигание, можно превратить подобный блок в мотор…

…такой, как американский Dina-Cam 1960-х с полувековыми корнями. Благодаря хорошему соотношению веса и мощности аксиальные агрегаты прочили на роль моторов для лёгких самолётов.

Разновидностью аксиальных агрегатов является новозеландский проект фирмы Duke Engines — пятицилиндровый четырёхтактник рабочим объёмом три литра. По сравнению с классическим ДВС того же литража этот был, по расчётам авторов, на 19% легче и на 36% компактнее. Ему сулили применение в самых разных областях, но мечты о завоевании целого мира остались мечтами.

Опытный образец мотора Duke был построен в 2012 году. Потом он мелькал на выставках, собирал призы, но вот уже несколько лет новостей о нём нет.

Ещё более сложный аксиальный пример — двигатель RadMax канадской фирмы Reg Technologies. Здесь вместо цилиндров в общем барабане с помощью тонких лопастей организована дюжина отсеков. В прорезях ротора установлены пластины, которые сдвигаются вдоль них по мере его вращения. С торцов полученные переменные объёмы ограничивают изогнутые поверхности: они задают траекторию движения лопастей и заведуют газообменом.

Основные части мотора RadMax. За один оборот вала тут происходит 24 полных рабочих цикла.

Схема RadMax позволяет создавать двигатели под разные виды топлива, хотя изначально изобретатели выбрали дизельное. В 2003 году был построен образец диаметром и длиной всего 152 мм. Он развивал 42 силы — в разы больше, чем схожий по габаритам ДВС. Позже фирма отчиталась о создании более крупных прототипов на 127 и 380 сил. Но, судя по релизам, вся её деятельность по-прежнему не выходит за рамки экспериментов.

Ещё один пример превосходства теории над практикой — тороидальный мотор Round Engine (или VGT Engine) уже исчезнувшей канадской компании VGT Technologies. Первые прототипы двигателя с тором переменной геометрии (отсюда и буквы VGT — Variable Geometry Toroidal Engine) инженеры испытывали ещё в 2005 году.

Авторы кругового двигателя избавились от возвратно-поступательных движений. Отсюда — радикальное снижение вибраций. Плюсом можно назвать минимальное число деталей и хорошую расчётную экономичность.

Тор здесь играет роль цилиндра, внутри которого вращается ротор с парой закреплённых на нём поршней. Необходимые для обеспечения рабочих тактов переменные объёмы образуются между поршнями с помощью тонкого распределительного диска с вырезом под поршни, который ремённым или иным приводом вращается поперёк тора. Этот диск ограничивает топливно-воздушную смесь в процессе сжатия и рабочего хода.

Система фирмы Garric Engines похожа на VGT, однако вместо поперечного распреддиска использовано шесть поворотных золотников.

В 2009 году свой тороидальный мотор, принципиально повторяющий канадский, разработали американцы Гарри Келли и Рик Айвас (видео выше). По их оценке, тор полуметрового диаметра обеспечивал бы 230 л.с. и около 1000 Н•м всего при 1050 об/мин. Но… На сайте их фирмы Garric Engines сейчас висит заглушка «Спасибо за интерес. В будущем страница может быть обновлена». Возможно, чуть лучшая судьба ждёт так называемый нутационный двигатель, придуманный американцем Леонардом Мейером в 2006 году — его хотя бы построили в нескольких экземплярах.

Главный принцип нутационного диска: в процессе работы он не вращается вокруг вала, а качается из стороны в сторону. Добавив перегородки, получаем отсеки, в которых газ может сжиматься и расширяться.

Нутация по-латински означает «кивать». Мейер сформировал четыре рабочие камеры переменного объёма между корпусом мотора и «кивающим» по сторонам диском, который играет роль поршня. Диск разрезан пополам вдоль своего диаметра и нанизан на Z-образный вал, с которого и снимается мощность. За газообмен отвечают каналы и клапаны в корпусе.

Рабочий диск показан в разрезе. Минимализму, уравновешенности и лёгкости нутационной конструкции позавидует даже двигатель Ванкеля.

Прототипы мотора Мейера построила компания Baker Engineering и родственная ей Kinetic BEI. С единственным диском диаметром 102 мм агрегат развивает семь сил, а с парой дисков по 203 мм — уже 120! Длина двухдискового двигателя — 500 мм, диаметр — 300, а рабочий объём — 3,8 л. На килограмм веса — 2,5−3 «лошади» против одной-двух у массовых атмосферных ДВС (из немассовых некоторые моторы Ferrari выдают больше трёх сил на килограмм, но при высоченных 9000 об/мин). Литровая мощность, правда, не впечатляет. Ныне Baker и Kinetic вроде как доводят проекты до ума, хотя особой активности на их сайтах не видно.

За один оборот вала в двухдисковом нутационном агрегате происходят те же четыре рабочих хода, что и в восьмицилиндровом поршневом «четырёхтактнике». На фото — одно- и двухдисковые рабочие прототипы. (Кстати, из двух дисков в принципе можно создать и машину с разделённым циклом, одному отдать сжатие смеси, другому рабочий ход.)

В 2010 году нутационный мотор попал в зону интереса исследовательского центра ВВС США. Гарри Смит, менеджер лаборатории, демонстрирует внутренности мотора и объясняет, что особую ценность конструкция представляет для лёгкой авиации.

Идея роторных агрегатов различного типа так часто привлекает новаторов, будто один лишь отход от знакомой схемы даёт существенное повышение характеристик. Так, Николай Школьник, выходец из СССР, давно перебравшийся в США, с сыном Александром разработал мотор, напоминающий двигатель Ванкеля, вывернутый наизнанку. Ротор арахисовой формы также вращается в треугольной камере, но в отличие от агрегата Ванкеля уплотнители закреплены не на поршне, а на стенках камеры.

В роторе LiquidPiston есть полость, играющая свою роль в газообмене. Процесс сгорания проходит при постоянном объёме, а затем идёт расширение — это один из факторов, повышающих КПД.

Для развития конструкции Школьники основали фирму LiquidPiston, которой заинтересовалось оборонное агентство DARPA — теперь оно софинансирует эксперименты в расчёте на перспективы работы «арахисовых» агрегатов в лёгких летательных аппаратах, включая беспилотники, и в переносных генераторах. Опытный моторчик рабочим объёмом 23 см³ обладает неплохим для таких габаритов КПД в 20%. Теперь авторы нацелены на дизельный прототип весом около 13 кг и мощностью 40 л.с. для установки на гибридный автомобиль. Его КПД якобы вырастет уже до 45%.

Первый образец мотора Школьников можно положить на ладонь. Он весит 1,8 кг и может заменить вдесятеро более тяжёлый поршневой ДВС карта (показан слева). Мощность всего 3 л.с., но классический двигатель такого размера был бы ещё слабее.

Последний рассмотренный нами мотор демонстрирует, что идея плоского агрегата (ротор ведь можно сделать очень узким) заманчива. Вместе с тем для её реализации сами роторы не так обязательны — достаточно «оквадратить» традиционный поршень и, соответственно, сделать прямоугольным на виде сверху цилиндр.

Этой странной разработке фирмы Pivotal Engineering уже несколько лет, в течение которых создан ряд образцов, приводивших в движение мотоциклы и самолёты. Авторы адресуют так называемый качающийся поршень в первую очередь авиации. Помимо высоких выходных характеристик по отношению к весу и габаритам, такой двухтактный агрегат отлично поддаётся форсировке за счёт прохождения сквозь неподвижную ось поршня (рисунок ниже) жидкостного канала охлаждения. С иной схемой такой трюк затруднителен.

Задумка компании Pivotal Engineering из Новой Зеландии представляет собой мотор с качающимися прямоугольными (в плане) поршнями. Один их край закреплён на неподвижной оси, второй — связан с шатуном. Справа — четырёхцилиндровый образец на 2,1 л.

За пределами нашего обзора осталось ещё много экзотических разработок вроде 12-роторного мотора Ванкеля, двигателя Найта или агрегатов со встречными поршнями, ДВС с изменяемой степенью сжатия или с пятью тактами (есть и такие!), а ещё роторно-лопастные агрегаты, в которых составные части ротора совершают движения, будто сходящиеся и расходящиеся лезвия ножниц.

Ещё пример чудачеств — H-образный двигатель, объединяющий в себе две рядные «пятёрки». Автор патента Луи Хернс полагает, что одну половину агрегата можно адаптировать под бензин, а другую — под метан и активировать их как врозь, так и вместе.

Даже беглый экскурс за пределы классических ДВС показал, сколь большое количество идей не находит массового воплощения. Роторы часто губит проблема износа уплотнений. Роторно-лопастные варианты вдобавок страдают от высоких знакопеременных нагрузок, разрушающих механизм связи лопастей и вала. Это только одна из причин, почему мы не встречаем такие «чудеса» на серийных автомобилях.

Вторая — в том, что и традиционные ДВС не стоят на месте. У последних бензиновых образцов с циклом Миллера термический КПД доходит до 40% даже без турбонаддува. Это много. У большинства бензиновых агрегатов — 20−30%. У дизелей — 30−40% (на крупных судах — до 50). А главное — глобальная альтернатива ДВС уже найдена. Это электромоторы и силовые установки на топливных элементах. Поэтому если изобретатели диковинок не решат все технические проблемы в самое ближайшее время, вырулить с обочины прогресса перед электричками они попросту не успеют.

Двигатели

— Двигатели Hirth Двигатели

— Двигатели Hirth

Мы используем файлы cookie на нашем веб-сайте. Некоторые из них очень важны, а другие помогают нам улучшить этот веб-сайт и улучшить ваш опыт.

Принять все

Сохранить

Индивидуальные настройки конфиденциальности

Подробная информация о файлах cookie

Политика конфиденциальности

Отпечаток

Предпочтение конфиденциальности

Здесь вы найдете обзор всех используемых файлов cookie.Вы можете дать свое согласие на использование целых категорий или отобразить дополнительную информацию и выбрать определенные файлы cookie.

Название

Borlabs Cookie

Провайдер Владелец сайта
Назначение Сохраняет предпочтения посетителей, выбранные в поле cookie файла cookie Borlabs.
Имя файла cookie Borlabs-печенье
Срок действия печенья 1 год

Будущее за двухтактным: Hirth Engines смотрит в будущее гибридных БПЛА

Будущее за двухтактным: Hirth Engines смотрит в будущее гибридных БПЛА — Hirth Engines

Мы используем файлы cookie на нашем веб-сайте.Некоторые из них очень важны, а другие помогают нам улучшить этот веб-сайт и улучшить ваш опыт.

Принять все

Сохранить

Индивидуальные настройки конфиденциальности

Подробная информация о файлах cookie

Политика конфиденциальности

Отпечаток

Предпочтение конфиденциальности

Здесь вы найдете обзор всех используемых файлов cookie.Вы можете дать свое согласие на использование целых категорий или отобразить дополнительную информацию и выбрать определенные файлы cookie.

Название

Borlabs Cookie

Провайдер Владелец сайта
Назначение Сохраняет предпочтения посетителей, выбранные в поле cookie файла cookie Borlabs.
Имя файла cookie Borlabs-печенье
Срок действия печенья 1 год

Двигатели

Hirth работают на UMS SKELDAR V-200

Двигатели Hirth работают на UMS SKELDAR V-200 — Двигатели Hirth

Мы используем файлы cookie на нашем веб-сайте.Некоторые из них очень важны, а другие помогают нам улучшить этот веб-сайт и улучшить ваш опыт.

Принять все

Сохранить

Индивидуальные настройки конфиденциальности

Подробная информация о файлах cookie

Политика конфиденциальности

Отпечаток

Предпочтение конфиденциальности

Здесь вы найдете обзор всех используемых файлов cookie.Вы можете дать свое согласие на использование целых категорий или отобразить дополнительную информацию и выбрать определенные файлы cookie.

Название

Borlabs Cookie

Провайдер Владелец сайта
Назначение Сохраняет предпочтения посетителей, выбранные в поле cookie файла cookie Borlabs.
Имя файла cookie Borlabs-печенье
Срок действия печенья 1 год

Компания

— Hirth Engines Компания

— Hirth Engines

Мы используем файлы cookie на нашем веб-сайте.Некоторые из них очень важны, а другие помогают нам улучшить этот веб-сайт и улучшить ваш опыт.

Принять все

Сохранить

Индивидуальные настройки конфиденциальности

Подробная информация о файлах cookie

Политика конфиденциальности

Отпечаток

Предпочтение конфиденциальности

Здесь вы найдете обзор всех используемых файлов cookie.Вы можете дать свое согласие на использование целых категорий или отобразить дополнительную информацию и выбрать определенные файлы cookie.

Название

Borlabs Cookie

Провайдер Владелец сайта
Назначение Сохраняет предпочтения посетителей, выбранные в поле cookie файла cookie Borlabs.
Имя файла cookie Borlabs-печенье
Срок действия печенья 1 год

Почему двухтактные двигатели почти не используются в авиации?

Потому что одноцилиндровые двигатели недостаточно мощные

В 2-тактных двигателях

цилиндр находится в нижней мертвой точке.Выхлопной газ выталкивается из цилиндра всасываемым воздухом , который активно закачивается в цилиндр . Это называется очисткой .

2-тактные двигатели

, , как вы их себе представляете, , используют картер для воздушного насоса. Опускающийся поршень сжимает воздух в картере, и когда впускной канал открыт, происходит продувка.

Угадайте, сколько цилиндров может быть в двухтактном двигателе. ОДИН .

Поскольку у вас 2 цилиндра, объем воздуха в картере не меняется, и он не может использоваться в качестве насоса.(Ну, если это ровно два, у вас может быть кривошип на 180 градусов, так что они оба будут работать одновременно, но это в значительной степени сводит на нет все преимущества двух цилиндров.)

Требуется продувка 2+ цилиндров

С 2 или более цилиндрами картер бесполезен в качестве насоса, поскольку объем картера не изменяется. (Положительным моментом является то, что вы можете использовать обычную систему смазки, и вам больше не нужно смешивать масло для двухтактных двигателей; конечно, теперь возникло больше сложности.)

Для очистки необходимо использовать какой-либо воздушный насос .Итак, теперь вы добавили кучу сложности. И что еще хуже, воздуходувка будет плохо работать на высоте.

«О, мы знаем, как исправить! Мы просто воспользуемся турбокомпрессором». Отличный пацан, но как ты собираешься это начать? Двигатель нужно продувать на всех оборотах, даже при проворачивании коленчатого вала — так что турбонаддув бесполезен при настройках малой мощности. Вам нужна обгонная муфта , чтобы двигатель мог механически приводить в движение турбокомпрессор на малых оборотах / пуске. Больше сложности.

Кроме того, если впускной и выпускной патрубки являются портами со стороны цилиндра, это создает серьезные проблемы с износом колец и карбонизацией.Кроме того, забавная форма поршня (для обеспечения правильного потока воздуха) значительно усложняет сжигание топлива и ограничивает максимальное сжатие. Так что очень скоро, когда ваш двухтактный двигатель станет больше, вам нужно переместить впускной или выпускной клапан на клапанов , и из-за колец и карбонизации выпускные клапаны имеют больше смысла, чем впускные. Итак, вы вернулись к тому месту, где начали с клапанов в головке блока цилиндров.

Однако впускные каналы имеют свои проблемы: смесь топлива и воздуха будет непосредственно контактировать с поршневыми кольцами, а неиспарившееся топливо будет вымывать масло в кольцах, увеличивая износ колец и разжижая масло. Это не проблема для дизеля, так как у них прямой впрыск в цилиндр .

Поздравляю. У вас есть двигатель, достаточно мощный, чтобы заменить Continental или Lycoming, и у вас

  • Масляный насос
  • Распредвалы и выпускные клапаны
  • Воздуходувка
  • Прямой впрыск для решения проблемы промывки колец

Так что простота не удалась.

Выбор двигателя

— Heavenbound Aviation

Теперь давайте обсудим экономику двухтактного двигателя.В то время как двухтактный двигатель имеет гораздо более короткий межремонтный интервал, он требует гораздо меньше денег для предварительной покупки и гораздо меньше денег на капитальный ремонт. Опять же, это идеально подходит для нашего типа полета. Двигатель, который ремонтируется чаще, но с меньшими затратами, обеспечивает большую надежность. При 50 часах в год через 20 лет у нас будет 1000 часов. У четырехтактного четырехтактного двигателя, рассчитанного на 2000 часов, осталось бы пройти еще 1000 часов. Но у вас был бы двигатель, который не ломали 20 лет! Его демонтаж будет стоить более 10 000 долларов, что является серьезным сдерживающим фактором при проведении капитального ремонта, поэтому он, вероятно, будет продолжать лететь, как бомба замедленного действия.Но в случае двухтактного двигателя, например, Hirth, допустим, для профилактического обслуживания мы проводим полный демонтаж, осмотр и повторное уплотнение каждые 7 лет, мы бы потратили около 650 долларов на него дважды, так что около 1300 долларов, и теперь в 1000 часов мы собираемся сделать капитальный ремонт, новую кривошип, поршни и все изнашиваемые детали. Мы будем искать около 3000 долларов, и у нас есть двигатель, как новый, готовый к работе еще на 1000 часов. Теперь у нас есть двигатель, на который мы потратили гораздо меньше авансовых средств, до его осмотра и повторного уплотнения не более 7 лет, и его можно полностью отремонтировать за небольшую часть стоимости.На мой взгляд, в этом гораздо больше смысла.

Хотя в самолетах нашего типа используется несколько четырехтактных двигателей, я действительно думаю, что двухтактные гораздо лучше подходят для этого применения. Основными двумя моделями четырехтактных двигателей, которые популярны в наших самолетах, являются Rotax 912 и HKS 700. Я с радостью продам и установлю эти двигатели для тех, кому они нужны, но в целях этой статьи я сосредоточусь на на двух штрихах, поскольку это подавляющее большинство того, что мы продаем.Сначала мы обсудим каждую модель двигателя, затем рассмотрим каждый планер и то, что лучше всего подходит для каждого из них.

Двигатели

Rotax Общая информация

Rotax, подразделение Bombardier, в течение многих лет производит двухтактные и четырехтактные двигатели для различных рынков. Они очень хорошо известны на рынках санок и водных лыж. В начале 80-х, когда набирал популярность сверхлегкий механизм, многие люди считали, что двигатели Rotax хорошо подходят для этого нового применения.Со временем Rotax начал маркетинг в этой новой отрасли. В первые дни количество неудач было очень высоким, и были придуманы такие лозунги, как «друзья не позволяют друзьям летать двумя ударами». Со временем люди узнали, что если вы возьмете новый двигатель Rotax и разобьете его, выровняете кривошип, проверите баланс и допуски и при необходимости отрегулируете, то из него можно будет сделать довольно надежный двигатель. Компания Rotax обратила на это внимание и создала отдельную линейку специализированных авиационных версий многих своих двигателей, уделяя особое внимание контролю качества.Вскоре они даже выпустили свой первый специализированный авиационный двигатель 532 мощностью 65 л.с., включая специальный редуктор PRSU, коробку передач A, которая крепится болтами прямо к картеру. Это действительно продвинуло их вперед на авиационном рынке. Вскоре у них появилась «резервная» версия 377, 447 и 503. У модели 503 по-прежнему наблюдается довольно высокая частота отказов коренных подшипников конца вала отбора мощности, и вскоре модель 503 была модернизирована, чтобы включить в нее подшипники ВОМ большего размера, а также двойное электронное зажигание и картер двигателя с новым типом 8.Они также выпустили коробку передач B для картера Provision 8, за которой последовала коробка передач C, которая включала резиновую демпфирующую муфту вместо прямого привода и более крупные шестерни для обеспечения большей мощности, более тяжелых опор и более глубоких передаточных чисел. Позже была представлена ​​коробка передач E, похожая на коробку передач C с добавлением электрического запуска, встроенного в коробку передач. В 1990 году на рынке появился первый авиадвигатель 582 модели 90, заменивший 532. Благодаря большему диаметру цилиндра и двойному электронному зажиганию это было отличным улучшением по сравнению с 532 и повышенной надежностью.В 1999 году была представлена ​​582 модель 99, в которой было сделано несколько улучшений в надежности. После того, как правила Sport Pilot вступили в силу, Rotax получила сертификат ATSM на 582 модель 99, а также на 503, первые двухтактные двигатели для достижения этой цели. Однако вскоре после этого 503 был снят с производства, и 582 остается единственным двухтактным двигателем, сертифицированным ATSM, по крайней мере, на данный момент. До прекращения производства 503 и 447 компания Rotax занимала около 80% рынка сверхлегких и сверхлегких самолетов.Поскольку 582 — единственные оставшиеся два такта, которые они производят в настоящее время, доля Rotax на рынке неизбежно будет уменьшаться. Rotax также производит четырехтактные двигатели серии 912/914. Четырехтактные двигатели продаются примерно в 10 раз больше, чем 582, благодаря правилу спортивных пилотов, а также военным контрактам на них, устанавливая их на БПЛА. Может наступить день, когда Rotax полностью уйдет с рынка двухтактной авиации. Время покажет.

Гарантия: Гарантия на Rotax 582 составляет 18 месяцев со дня покупки.Гарантия не учитывает часы работы, только дату покупки. (Держите в моем распоряжении при заказе двигателя, чтобы доставить его как можно позже в процессе сборки, чтобы ваша гарантия не истекла, когда она лежала на полке.)

Двухтактный — KITPLANES

Хирт

Recreational Power Engineering (RPE) в Огайо поставляет на рынок Северной Америки мощные высокоточные двухтактные двигатели, построенные компанией Hirth в Германии.В 2020 году Hirth прекратил выпуск некоторых более крупных двигателей, а именно 3502, 3702 и 3703, чтобы сосредоточиться на своих бестселлерах с малым и средним рабочим объемом. В остальном в модельном ряду Hirth нет никаких модельных или технических изменений. И хотя колебания международных валютных курсов требуют уточнения последних цен в RPE, повышения цен не происходит.

Двигатели

Hirth обычно предлагаются с коробкой передач или без нее (с множеством передаточных чисел на выбор) и могут иметь другие важные варианты заказа, такие как добавление центробежной муфты к приводу, электростартер, впрыск масла или электронный впрыск топлива.

Сосредоточение внимания на своих самых продаваемых двигателях среднего класса означает, что Hirth отказался от своих трехцилиндровых предложений в 2021 году. Это по-прежнему оставляет до 70 л.с. доступными с их двухтактными двухцилиндровыми двигателями при цене чуть более одного фунта на лошадиную силу.

В этом руководстве мы отображаем базовый двигатель для каждой модели в наших диаграммах. Кроме того, в модельном ряду двигателя могут быть различия в настройке, что означает, что пики мощности и крутящего момента могут быть выбраны между высокими и низкими параметрами в зависимости от того, что больше ценится — максимальная пиковая мощность или максимальная топливная эффективность крейсерского режима.Двигатели Hirth меньшей мощности имеют воздушное охлаждение; более крупные двигатели имеют водяное охлаждение.

Поскольку двигатели Hirth производятся ограниченными периодическими сериями, время выполнения заказа может составлять от четырех до шести недель, поэтому предварительное планирование является обязательным. Условия гарантии от RPE хороши и включают предоплату доставки при возврате двигателя для обслуживания.

Спонсор освещения авиашоу:

Rotax

Укороченная версия современного двухтактного двигателя Rotax 582 UL мощностью 65 л.с. все еще производится и используется в нескольких LSA.Это означает, что 582 двигателя в сборе, запчасти и обслуживание всегда доступны. Однако после модели 582 обширное наследие линейки двухтактных двигателей Rotax уходит в прошлое. 503 — это двухтактный двигатель Rotax, который недавно был снят с производства, но все еще есть поддержка. У Локвуда на складе 503 коротких блока — по крайней мере, на данный момент.

Модель 582 доступна с прямым приводом или с одной из двух коробок передач. Коробка передач B («привод» на языке Rotax) подходит для трехлопастных гребных винтов меньшего диаметра и более легких, в то время как коробка передач E больше по размеру и включает в себя электростартер внизу.В других двигателях 582 стартер размещается в задней части или на другом конце двигателя. Коробка E может выдерживать примерно вдвое большую инерционную массу пропеллера, чем привод B. На 2021 год компания Rotax не вносила никаких технических изменений в линейку 582.

Модель двигателя Тип привода Мощность Масса Цена
BRP Rotax
582 UL
Двойной унитаз, встроенный
с редуктором 65 л.с. при 6500 об / мин карбюраторный104 фунта без радиатора, с коробкой передач и выхлопной системой 5378 $ без коробки передач,
6428 $ B привод,
$ 7373 E привод
Hirth также: recpower.com
F-23
оппозитный сдвоенный
ремень 50 л.с. при 6150 об / мин 71 фунт свободного воздуха со стартером и выхлопом $ 6312 электростартер
3202
рядный сдвоенный
с редуктором 55 л.

Related Post

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *